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Abstract— Facial expression analogy provides computer ani-
mation professionalswith a tool to map expressionsof an arbi-
trary sourcefaceonto an arbitrary target face.In the recentpast,
several algorithms have beenpresentedin the literatur e that aim
at putting the expressionanalogy paradigm into practice. Some
of thesemethodsexclusively handle expressionmapping between
3D face models, while others enable the transfer of expressions
betweenimagesof facesonly. None of them, however, represents
a more general framework that can be applied to either of
thesetwo face representations.In this paper, we describea novel
generic method for analogy-basedfacial animation that employs
the same ef�cient framework to transfer facial expressions
between arbitrary 3D face models, as well as between images
of performer' s faces. We propose a novel geometry encoding
for triangle meshes,vertex-tent-coordinates, that enablesus to
formulate expression transfer in the 2D and the 3D caseas a
solution to a simple systemof linear equations.Our experiments
show that our method outperforms many previous analogy-based
animation approachesin terms of achieved animation quality,
computation time and generality.

Index Terms— Facial animation, Facial image synthesis,Ex-
pressionanalogy.
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I. INTRODUCTION

T HE creation of realistic animatedfacesis still one of
themostchallengingtasksfor visualeffect professionals.

Many elementsin a human face contribute to the realistic
appearanceof a facial expression.The shapeof the mouth,
the look of theeyebrows, aswell asthegazearejust themost
importantcluesthat an observer perceives.Thesevisual clues
have also beenused for recognizingfacial expression [1].
However, also more subtledetails,suchas wrinkles and the
tone of the skin under different illumination conditions,are
important componentsof the overall picture of a face. It is
thusno wonderthat, if in a computer-animatedfaceonly one
of theseelementsis not convincingly simulated,the illusion
of looking at a realhumanwill immediatelybecompromised.
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In thepast,it hasbeentried to meetthesehigh requirements
in visualqualityby exactlymodelingandanimatingthehuman
3D face geometry [2]–[5]. However, it is a non-trivial and
time-consumingtaskto tunethe parametersof the underlying
deformationframework, e.g.a simulatedmusclesystem.Fur-
thermore,it is hardly possibleto transferanimationsbetween
different individuals.

Image-basedapproaches[6]–[8] aim at generatingrealistic
talking headsby analyzingimagesor video datashowing real
performers.Many of themsuffer from quality deteriorationin
the presenceof imagenoiseor requirea databaseof example
facial expressionsthat is not easyto build.

Only recently, novel scanningdeviceshave beenpresented
that enablereal-timecapturingof the dynamic3D geometry
of a performing actor's face [9], [10]. However, although
such high-quality dynamic shapedata becomemore easily
accessible,it is still complex and expensive to capturefacial
expressionsequencesfor many differentsubjectswith sucha
device. The animatorsare still in needof ef�cient methods
to transfer capturedexpressionsequencesonto models of
other individuals. While 3D acquisitionis still complicated,
photographsof facial expressionscanbe capturedvery easily.
There exists alreadya numberof image databasesshowing
different people performing a variety of facial expressions,
such as the FERET database [11]. For animation profes-
sionals, it would be a great leap forward if they were able
to transferphotographedfacial expressionsonto portraits of
arbitrary people. In both the 3D and the 2D expression
mappingcase,it is important that all the appearancedetails
of the facial expressionaretransferredfrom onemodelto the
other. Facialexpressionanalogyprovidesanimatorswith a tool
that serves this purpose.Only a few algorithmsfor analogy-
basedanimationhavebeenpresentedin thepast [4], [6], [12]–
[16]. Unfortunately, they can either be exclusively appliedto
3D facemodelsor only allow for expressiontransferbetween
photographs.

In contrast,we presenta genericmethodfor analogy-based
facial animation that on one hand can transfer expressions
from a source3D facemodel to a target 3D facemodel,and
on the other handcan map expressionsfrom a sourceimage
of a face to an arbitrary target image. Our methodenables
the target faceto mimic even subtleexpressiondetailsin the
sourceface,suchaswrinkles. In the 2D caseit even enables
convincing expressionmappingif the lighting situationsin the
sourceand the target image differ. To achieve this purpose,
we representboth 3D facegeometryaswell as2D imagesof
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facesas3D trianglemeshes.In both the 2D andthe 3D case
motionandexpressiondetailsaremappedfrom input to output
modelsby making use of a novel local geometryencoding,
vertex tent coordinate.This representationenablesus to map
facial expressionsfrom input to output modelsvia solving a
simple systemof linear equations.This paperintroducesthe
following key-contributions:

² a genericmethodfor high-qualityanalogy-basedexpres-
siontransferbetween3D facemeshes,aswell as2D face
images,

² VTC (Vertex Tent Coordinate)– a new local geometry
encodingmethodfor 3D surfacerepresentations,

² an approachthat handlesnot only triangle meshesbut
alsoquadranglemeshes,

² a methodthat realistically transfersall details of facial
expressionsdespite differences in lighting and facial
proportions,

² A formulationof facialexpressionanalogyasthesolution
of simple linear equationsystemsto get high ef�ciency.

Theremainderof thispaperis organizedasfollows:Wereview
important related work in Sect.II, and give an overview of
our methodin Sect. III. Sect. IV details the theoreticalfun-
damentalsof our local geometryencodingbaseddeformation
transferalgorithm that is the heart of our facial expression
analogymethod.Sect.V presentsthe nuts and bolts of 3D
facialexpressionanalogy, while Sect.VI dealswith expression
mappingbetweenimagesof faces.We describeexperimental
resultsanda comparisonto relatedmethodsfrom theliterature
in Sect.VII, andconcludewith an outlook to future work in
Sect.VIII.

I I . RELATED WORK

In thepastdecades,anenormousamountof scienti�c work
has beenpresentedin the �eld of facial animation.Since it
would be virtually impossibleto nameall of thesemethods,
we refer the interestedreaderto thebookby Parke andWaters
[17], and constrict our review to analogy-basedapproaches.
Expressionanalogy [12], [18], [19] (also called expression
mapping,expressionretargetting)is a genericterm for a body
of methodsthat allow for the transferof a facial expression
from a sourcefaceto a target face.A target face(2D image
or 3D model with/without texture) with the sameexpression
asthe sourceis necessaryto performexpressionanalogy. For
easeof acquisition,a neutraltarget faceis usually employed
in the relatedwork. In our work, we also employ a neutral
target faceas input.

Many of the previously presentedexpressionretargetting
approachesare applicableto 3D facemodelsonly. Pighin et
al. [13] parameterizedeachperson's expressionspaceas a
combinationof some elementarybut universal expressions.
The expressionis decomposedinto a set of coef�cients. The
coef�cients are applied to anothermodel to obtain a similar
expression.As an extensionof Facial Action Coding System
(FACS) [20], the concept of facial expression parameters
(FAPs) for facial expressionsynthesishasalso found its way
into the MPEG-4 standard[21], [22]. By using 68 FAPs,
genericfacemotionarede�ned to synthesizethefacialexpres-
sion, which can be appliedconveniently to facial expression

analogy. Pyunetal. [4] improvedtheparameterizationmethod
by introducingradial-basis-function(RBF)-basedinterpolation.
Park [23] extendedthis further to feature-basedexpression
cloning. Unfortunately, these approachesusually use low
resolutionface model which is lower computationcomplex.
Neitherof thesemethodscanmimic subtleexpressiondetails
(wrinkles,furrows,etc.)on thetargetdueto their sparsevertex
distribution. Thoughtexturesareaddedto the 3D facemodel
to enhancetherealism,it' s dif�cult to assessthequality of the
geometric3D deformationasthey aremasked by the texture.
In fact, Park et al. employed fairly coarsefacemeshessuch
that they werenot able to show the samegeometricdetail in
transferredexpressionsas we do. Noh and Neumann [14]
developeda different 3D facial analogymethod.They apply
a semi-automatictechniqueto �nd correspondencebetween
the sourceand target face,which is also applied as part of
our featurepoint localizationmethod.They also developeda
new motionmappingtechniquethatadjuststhedirectionsand
magnitudesof the motion vectorsby taking into accountthe
differencein local geometrybetweenthesourceandthetarget.

Recently, deformationtransferbetweentrianglemesheshas
becomeanimportantresearchtopic in geometricmodelingand
high resolution3D facemodeling.Sumneret al. [15] modeled
the wrinkles by a series of triangle-basedtransformations
and map transformationsfrom input to output meshesby
applying per-triangle local deformationsand zippering the
so-createddisconnectedmesh. In contrast, we propose to
formulate deformationtransferon a per-vertex basis,which
enableus to not only dealwith trianglemeshesbut alsowith
quadrangleones.It has also beenpopular to use Laplacian
or differential coordinatesfor wrinkle modeling [16], [24],
[25]. The Laplaciancoordinateof a vertex is a vector whose
directionapproximatesthenormaldirectionandwhoselength
is proportionalto the meancurvature.This implicit encoding
of local normalshasa coupleof disadvantages.For instance,
if the one-ring neighborhoodtriangles of sourcevertex are
coplanar, the direction of its Laplacian coordinatecan not
correctlyapproximatethevertex normalandsomedeformation
details will be lost. Inspired by [15], in our representation,
we explicitly model the local surface normals in order to
preserve subtleshapedetailsduringexpressionmapping.Very
recently, Botschet. al. [26] presenteda thoroughanalysisof
the relationshipbetweengradient-baseddeformationand the
deformationtransfermethod.It shows their equivalencefor
surface meshes.Deriving a similar correspondencefor our
methodmay be feasible.In the context of facial expression
editing, thesemethodsrequiremanualfeaturepoint localiza-
tion.

A secondcategory of mappingalgorithmsaims at trans-
ferring facial expressionsbetween images of people. Liu
et al. [6] proposeda new 2D data representation,called
the expressionratio image (ERI), that can be used to map
one person's expressiondetails to a different person's face.
The appearanceof wrinkles is modeledin an image-based
way by the variation of the ERI betweenpixels. Although
their results are convincing, the authorsconcedethat large
differencesin illumination betweenthe sourceand the target
imagecannotfaithfully be handled,andan adaptive Gaussian
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�lter needsto be applied automatically to reduceartifacts
causedby misregistrations.This processis very time con-
suming.The misregistrationsis usually due to the imprecise
location of the featurepoints in the face whethermanually
or automatically. Different from this, our methodcan avoid
the artifactswithout the �ltering. Blanz et al. [27] developed
an algorithm to exchangefacesin imagesthat can also cope
with large differencesin viewpoint and illumination between
inputandoutput.Unfortunately, subtleexpressiondetails(such
as wrinkles and furrows) that vary betweendifferent facial
expressionscannot be fully represented.Song et al. [28]
tried to tackle this problem by a vector �eld decomposition
method.It is a triangle-basedsolutionwhich canbe regarded
as an extension of Sumner's method [15] being applied
to 2D images.However, the triangulation operation led to
longer runtimesand higher memory consumption.Different
from [28], our method treats the image as an quadrangle
meshdirectlywithout triangulation.Manuallabelingof feature
points is neededin thesemethodsfor high-quality results.

Most closely related to our method is the approachby
Zhang et al. [7]. They proposea techniqueto synthesize
detailedfacialexpressionsof a targetfacemodel(2D or 3D) by
analyzingthe motion of featurepointson a performer's face.
Theiralgorithmrequiresexampleexpressionsof thetargetface
model,which is not alwaysavailable.And, the featurepoints
in the faceare labeledmanually.

In contrastto the aforementionedmethods,we presenta
genericsolutionto both3D and2D facial expressionanalogy.
It allows for high-qualityexpressiontransferbetween3D face
models,andalsoenablesrobust expressionmappingfrom the
sourceexpressionimage to a neutral target one even in the
presenceof lighting differences.

Our facial expressionanalogyapproachhas a numberof
important advantagesover related algorithms. Firstly, our
methodoutperformsrelatedapproachesin termsof quality and
speedin both the 2D andthe 3D case.Secondly, the fact that
the facial expressionanalogyproblemin both the 2D andthe
3D domaincan be formulatedin termsof the sameef�cient
framework is animportanttheoreticalinsightby itself.Thirdly,
our techniquebasedon vertex-tent coordinatesrendersour
approachvery �e xible sincewe canprocessboth triangleand
quadranglemeshesin the sameway. As an additionalbene�t,
our method�ts well into the standardproductionpipelinefor
moviesandgames.In this applicationscenario,it is nowadays
state-of-the-artto capturefacial expressionsequenceswith a
structuredlight scanner[9]. Our approachenablessigni�cant
cost reductionsas facial expressionsequencesonly needto
be capturedonce from a single actor and can thereafterbe
mappedonto arbitrary other actorsfrom whom only a static
scanis available. Finally, a uni�ed and fast framework like
oursreducesimplementationcomplexity, asthesameroutines
canbe employed for both the 2D andthe 3D case.

I I I . PROBLEM STATEMENT AND OVERVIEW

In a nutshell, our method enablesus to transfer a facial
expressionof an arbitrary input face to an arbitrary output
face.It is equallyapplicableto both 3D facemodelsand2D

faceimages.The input to our methodcomprisesof a source
face with a neutral expression, henceforth termed source
neutralfaceS, the samesourcefacein a desiredexpression,
henceforthtermedsourceexpressive faceS0, anda target face
in a neutralexpression,henceforthtermedtarget neutralface
T. Our algorithm mapsthe expressionof S0 onto the target
face, therebycreatingthe output T 0. In the 3D case,either
of the facescomesas a 3D triangle mesh.In the 2D case,
eachface is representedas a picture. To make 3D and 2D
facesaccessibleto the sameexpressionanalogymethod,we
transformeachfacepicture into a 3D mesh.By meansof a
localgeometryencodingtermedvertex-tent-coordinate(VTC),
expressionscanbetransferredbetweensourceandtarget faces
by solving a simplesystemof linear equations.

Before an expressionis mapped,the sourceneutral face,
the sourceexpressionface,and the target neutral face need
to be alignedso that they have the sameorientation,location
andscale.Consequently, per-vertex correspondencesbetween
sourceand target modelsare established.In our method,a
strategy to locate feature points is proposedthat requires
only a minimum of manualinteraction.Our strategy consists
of two substeps.In the 3D case , the �rst substepis an
automatic labeling processwhich locates feature points by
meansof heuristicrulesoriginally proposedin [14]. In the2D
case,the �rst substepadoptsan AAM (Active Appearance
Model) [29] based tracking method to locate the feature
points automatically. Though all human faces exhibit the
sameanatomicalfeatures,their occurrencesmaygreatlydiffer
acrossdifferentindividuals.Therefore,to robustly accountfor
theseanatomicaldifferencesduring correspondence�nding,
we ask the user to manually adjust the featurepoints after
automaticinitialization in the secondsubstep.Thesefeature
points specify a set of correspondinglocationsbetweenthe
source and the target face. The feature point set should
include the following elements(as shown in Fig. 1 for the
3D andthe 2D case):

(1) Featurepointson the contourof the eye brows.
(2) Featurepointson the contourof the eyes.
(3) Featurepointson the nose,including tip andwings.
(4) Featurepointson the mouth.
(5) Featurepointson the jaw.
(6) Featurepointson the cheek.
(7) Featurepointson forehead.

Once the correspondencesbetweenthe input and the output
facehave beenestablished,our VTC-baseddeformationtrans-
fer methodis appliedto map the sourceexpressiononto the
target. Note that apart from the manualadjustmentsubstep
mentionedabove, thewholefacialexpressionanalogypipeline
is fully-automatic. The above sequenceof processingsteps
forms the algorithmic backboneof both our 3D and 2D
expressionanalogywork�o w. However, their individual im-
plementationsslightly differ which we detail in the respective
subsectionsof Sect.V andSect.VI.
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Fig. 1. Featurepointson 3D facemodel (left) and2D faceimage(right)

IV. DEFORMATION TRANSFER

We use 3D triangle or quadranglemeshesto represent
sourceand target facesin both the 3D and the 2D case(see
alsoSect.VI-A for thespeci�csof the2D case).A novel local
vertex-centeredgeometryencodingof a 3D meshenablesusto
betterpreserve subtleshapedetailswhile mappingexpressions
from sourceto target. The target expressionis obtainedwith
solving a simplesystemof linear equations.

For the purpose of expression analogy, we represent
a vertex and its one-ring neighborhoodby means of a
set of vectors, which we call the vertex-tent-coordinates.
Given a vertex v0 and its one-ring neighboring vertices
f v1; ¢¢¢; vn g, shown in Fig. 2, the �rst componentof our
vertex-tent-coordinate(VTC) is matrix formed by a set
of vectors ¹ = [ v1 ¡ v0 v2 ¡ v0 ¢¢¢ vn ¡ v0 0 ].
The second componentof the VTCs is de�ned as º =
[ 0 0 ¢¢¢ vn +1 ¡ v0 ] wherewe have introducedan ad-
ditional vertex vn +1 in the vertex normal direction (Fig. 2).
The completelocal geometryis thusencodedby ¹ + º .

Themainadvantageof our vertex-tent representationis that
it representsgeometrynot on a per-triangle-basis(such as
Sumneret al. [15]) but ratherencodesgeometryin termsof
a vertex, its one ring neighborhoodand an explicit vertex
normal. Our method also resemblesthe local pyramid co-
ordinatespresentedby [30] which are invariant under rigid
transformations.However, the reconstructionprocessfrom
pyramid coordinatesto vertex coordinatesrequiresto solve a
non-linearsystemiteratively which is rathertime-consuming.
In contrast,our VTC representationenablesus to solve the
expressiontransferproblemby quickly solvinga linearsystem.

Consequently, local deformationin the neighborhoodof a
vertex can be describedby the variationsof the vertex-tent-
coordinates.If we assumethatw = ¹ + º andw0 = ¹ 0+ º 0 are
theVTCsof avertex beforeandafterdeformationrespectively,
and Q is the applied transformationmatrix, the following
equationholds:

Qw = w0 . (1)

which canbe reformulatedas follows:

Q = w0wT (wwT )¡ 1 . (2)

We call this formulation of the deformationproblem VTC-
baseddeformationtransfer.

The VTCs enableus to expressthe deformationtransfer
betweencomplete3D meshesas the mappingof transforma-
tionsbetweenlocal vectorsets.Therefore,for eachvertex, we
have a Q for it to be appliedto the correspondingvertex on
the target. Due to the physical differencebetweenthe source

Fig. 2. Vertex-tent-coordinates(VTCs) encodethe geometryof a vertex and
its one-ringneighborhood.Black arrows andred arrow representthe ¹ andº
componentsof the VTCs respectively.

face and the target one, it is inevitable to generatea lot of
artifactsin the result if we apply Q directly. In orderto make
sure that the transformationsof vertices in each local one-
ring neighborhoodcomply with eachother, we enforce the
following consistency constraintduring expressiontransfer:

Qj
t vi = Qk

t vi ; i 2 f 1; : : : ; N g; j ; k 2 p(vi ) . (3)

Here,p(vi ) is the setof indicesof all verticesin the one-ring
aroundvertex vi andQ1

t ; Q2
t ; : : : ; QN

t arethetransformsof the
N verticesof thetargetmesh.VTC-baseddeformationtransfer
is now performedby minimizing the differencebetweenthe
source transformationsQ1

s ; : : : ; QN
s and the corresponding

target transformationsQ1
t ; Q2

t ; : : : ; QN
t under the above con-

straintsin termsof the target transformations:

min
Q1

t ;::: ;QN
t

NX

m =1

kQm
s ¡ Qm

t k2
F

subjectto

Qj
t vi = Qk

t vi ; i 2 f 1; : : : ; N g; j ; k 2 p(vi ) . (4)

In the equationabove, k ¢kF is the Frobeniusnorm. If one
substitutesEq. (2) into Eq. (4), one obtainsa formulation of
the problemin termsof the coordinatesof the target meshin
the target expression.Solving for thesecoordinatesin a least-
squares-sensecorrespondsto solvinga simplesystemof linear
equations,which we henceforthrefer to asVTC deformation
equation.The solution of this linear systemcan quickly be
computedby meansof LU decomposition[31].

Speci�cally, for a vertex v0 on the target, the linear system
for it is describedasbelow:

A

2

6
6
4

v0

v1

¢¢¢
vn +1

3

7
7
5 = S (5)

where

A =

2

6
6
6
6
4

2

6
6
6
6
4

¡ 1 ¡ 1 ¢¢¢ ¡ 1
1 0 ¢¢¢ 0
0 1 ¢¢¢ 0

¢¢¢ ¢¢¢ ¢¢¢ ¢¢¢
0 0 ¢¢¢ 1

3

7
7
7
7
5

wT
t (wt wT

t )¡ 1

3

7
7
7
7
5

T

(6)

S = [w0
swT

s (wswT
s )¡ 1]T (7)
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V. 3D FACIAL EXPRESSION ANALOGY

We now describehow to applyour genericfacialexpression
analogymethod,in order to map an expressionfrom a 3D
sourceface mesh to a 3D target face mesh.The work�o w
of 3D facial expressionanalogyis illustrated in Fig. 3. The
sourceneutral, the sourceexpressive and the target neutral
facesare given as 3D triangle meshes.The user speci�es
correspondingfeaturepoints on the sourceneutraland target
neutral meshes.Thereafter, both models are automatically
alignedby the methoddescribedin [32] whosemain ideacan
be summarizedas follows. Firstly, we computethe centroid
coordinatesof the sourceand the target with the aid of the
feature points. Then, we derive the relative coordinatesof
the featurepoints with respectto the centroids.Thirdly, the
rotation and scalevalue betweenthe sourceand the target is
computedin least-squaressenseby meansof singular value
decomposition.The translationbetweenthe sourceand the
targetcanbeobtainedfrom thedistanceof their centroids.By
applying the computedrotation, scaleand translationvalue,
the target faceis alignedto the sourceone.

Before we can apply our VTC-baseddeformationtransfer
approachto mapthesourceexpressionontothetarget,wehave
to establishdenseper-vertex andper-trianglecorrespondences
betweenthe input and the output mesh.To this end, relying
on the powerful GraphicsProcessingUnit (GPU), we have
developed a very ef�cient GPU-assistedmethod.Since the
source and target geometriesdiffer in both triangle count
and topology, we �rst establishper-vertex correspondences
and correct topological differencesin a postprocessingstep
automatically. Our correspondence�nding methodcomprises
the following main steps:
(1). The alignedsourceneutraland target neutralmodelsare
projectedonto cylinders.
(2). We make use of the GPU to transform the cylindrical
target meshinto an image,the so-calledmeshimage.
(3). Usingtheparameterizedsourceneutralmodelasreference
geometry, we resamplethegeometryof the targetmeshbased
on its correspondingmeshimage.
(4). Redundantverticesare deletedand the topologiesof all
input meshesareupdatedaccordingly.

Oncethe geometrycorrespondenceshave beenestablished,
we can employ the VTC-baseddeformationtransfermethod
to map the sourceexpressiononto the target face.Resultsof
our methodareshown in Fig. 8 andFig. 10.

A. CorrespondenceFinding

1) Cylindrical Projection: After facemodelalignment,the
sourceneutralandthetargetneutralmeshesareprojectedonto
a cylinder. For a vertex p = [xo; yo; zo]T , its cylindrical coor-
dinateafter projectionis (uo; vo), whereuo = arccos(xo=r),
and r =

p
x2

o + z2
o . An original meshand its corresponding

cylindrical projectionareshown in Fig. 4.
2) MeshImage: We want to resamplethe geometryof the

targetmeshsuchthat its topologycorrespondsto the topology
of thesourcemesh.In theprocessof resampling,vertex coor-
dinatesof the target meshhave to be interpolated.Computing
interpolatedvertex coordinateson theCPUis fairly inef�cient.

Fig. 4. The original 3D mesh(left) and its cylindrical projection(right).

Fig. 5. A target mesh(left) and its correspondingmeshimage(right)

Fortunately, current GPU support 32bit/16bit �oating point
format texture. Thereforewe canexploit the GPU to perform
geometryinterpolationvery ef�ciently . Motivatedby [33], we
transform the target cylindrical mesh into a high-resolution
texture image. In this mesh image, the r , g and b color
channelsstorethe correspondingx, y, z coordinatesof each
vertex. The mesh image can be straightforwardly generated
on the GPU by renderingthe cylindrical target mesh with
the vertex coordinatesusedas vertex colors. The hardware
interpolationof the GPU leadsto a denserepresentationof
the surface geometryin the texture domain. A target mesh
and its correspondingmeshimageareshown in Fig. 5.

3) Parameterization:In a preprocessingstep,the userhas
labeled correspondingfeature points on the sourceand the
target mesh.We make use of thesefeaturepoints to de�ne
a parameterizationof the sourcemesh.To this end, in the
cylindrical meshwe triangulatethe featurepoints as well as
the four boundaryvertices of the bounding box A, B , C
and D, as it is illustrated in Fig. 6. The meshobtainedby
this triangulationis henceforthreferredto asparameterization
mesh.

Based on this parameterizationof the source mesh, we
resamplethe target mesh in the following way: for each
vertex p of the sourcemeshwe determinein which triangle
t = [lm 1; lm 2; lm 3] of the parameterizationmeshit lies, and
computeits barycentriccoordinates[xb; yb; zb] with respect
to t. The correspondingvertex coordinateon the target mesh
is computedby samplingfrom the target meshimageI t . The
locationlver tex of avertex in I t thatcorrespondsto p evaluates
to

lver tex = [ lm 1 lm 2 lm 3 ][ xb yb zb ]T

= lm 1xb + lm 2yb + lm 3zb
(8)

where l i = [ui ; vi ]T (i = 1; 2; 3) are the locations of the
verticesof the parameterizationtriangle in the meshimage,
which areequalto the locationsof the correspondingmarked
featurepoints in the meshimage.Finally, the corresponding
vertex' 3D coordinate[xver tex ; yver tex ; zver tex ]T is retrieved
by sampling the r , g, b value at pixel lver tex . In case
[xver tex ; yver tex ; zver tex ]T = 0, the vertex p is consideredto
have no correspondingvertex on the target.
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Fig. 3. The work�o w chartof 3D expressionanalogy.

Fig. 6. Parameterizationof sourcemeshby triangulatingthe marked feature
points and the boundingbox verticesA , B , C, and D in the cylindrical
representation.

A; B ; C; D are determinedby the bounding box of the
cylindrical coordinatesof the 3D mesh.Sincethe target face
is alignedto thesourceone,thebarycentriccoordinateswould
keepconstanteven thoughthe target headmotion happened.
Consequently, the expressionanalogyresult wouldn't be in-
�uenced.

4) Topology Correction: Also, in order to perform the
deformation transfer, it is necessaryto build the topology
correspondencebetweenthe sourceand the target meshes,
which lead to the VTC correspondencenaturally for each
vertex. Actually some of the vertices in the source mesh
have not been assignedto a partner vertex in the target
mesh.In terms of meshcorrespondence,thesenon-matched
source vertices are redundant.In order to make sure that
the topologiesof the sourcemeshand the resampledtarget
mesh are identical, the redundantvertices and the adjacent
trianglesareremoved from the sourcegeometry. An example
of topologycorrectionis shown in Fig. 7. This processensures
thattheVTCs for eachvertex of thesourceandthetargethave
beenassigneda correspondence.

VI . 2D FACIAL EXPRESSION ANALOGY

Our generic expressiontransfer method can also be em-
ployed to mapa facial expressionfrom a sourceimageof one
personto a target image of anotherperson.The luminance
(Y in YUV color space)variationsof the pixels re�ect the
changesof subtle expressiondetails in the face [6]. In our
approach,the face imageis regardedas the 3D surfaceof a

Fig. 7. By meansof topology correctionbetweensourcemesh(left) and
target mesh(right), the topologiesof the triangles in the sourcemeshare
reorganizedandredundantverticesaredeleted(middle).

height �eld whoseheight valuesare basedon the luminance
values. The transfer of these subtle expression details is
modeledby the luminancetransformationbetweenthe source
neutralandsourceexpressionfaceimage.This transformation
canbe computedandappliedon the target faceto obtain the
samesubtleexpressiondetailsby our VTC-basedmethod.

Theinputsto our 2D facialanalogyframework aretherefore
a photographof a sourceneutral face, S, a photographof
a sourceexpressive face, S0, and a photographof a target
neutral face, T. The output of the method is an image of
the target face T 0, in which the target subject mimics the
expressiondepictedin S0. To this end, we needto transfer
the changein the sourceface's shapebetweenS andS0 onto
the target face image. However, for 2D expressionanalogy
shapetransferalone is not suf�cient. We also have to make
surethat the differencesin the sourceface's textural surface
appearancebetweenS and S0 are correctly mappedonto
the target faceimage.Thesevariationsin surfaceappearance
acrossdifferent facial expressionsaremainly causedby local
lighting changesdue to skin deformation,e.g. in the vicinity
of wrinkles.To producethecorrectfaceshapeandthecorrect
surfacecolors in T 0 we combineour VTC-baseddeformation
schemewith a geometricimagewarpingapproach.While the
warpingmethodgeneratesthe correctshapeof the target face
in thenovel expression,ourVTC-baseddeformationschemeis
usedto correctlyreproducethechangedsurfaceappearance.In
contrastto previousmethods,like expressionratio images[6],
ourmethodcanfaithfully transferfacialexpressionsevenif the
lighting conditionsbetweenthe sourceand the target image
aresigni�cantly different.

Before we can apply our VTC-baseddeformationtransfer
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Fig. 8. Exampleresultsof 3D facial expressionanalogy:the expressions
in the sourcefacemodel (the �rst and third row) are realistically transferred
to the different target facemodel (the secondandfourth row) throughVTC-
basedexpressionanalogy. The density of the meshes:Row 1 & 3: 23725
vertices,46853triangles;Row 2 & 4: 19142vertices,37551triangles.

approachto map the correctsurfaceappearanceto the target
image,we needto transformall input imagesinto 3D meshes.
Moreover, in the2D casewe areconfrontedwith theproblem
that the source and the target face are usually shown in
different poses,and that their respective sizesin the images
may differ.

Consideringall the aforementionedissues,we suggestthe
following sequenceof stepsto perform 2D facial expression
analogy:
(1). Label the facefeaturepoints in S, S0 andT.
(2). Align theimagesS, S0 andT basedon theselectedfeature
pointsby rotation,scaleand translation.
(3). Computethe motion vectorof the featurepointsbetween
S andS0. Performgeometricimage-warpingon the imageT
by using the motion vectorsof the featurepoints betweenS
andS0 aswarpingconstraints.
(4). TransformS, S0 and T into correspondingimagegrids,
i.e. 3D triangle meshes,quadranglemeshes,etc. Build the
correspondencebetweenthe sourceandtarget face3D image
grids.
(5). VTC-basedexpressionmappingis carriedout to compute
the pixels' luminancevaluesin the warpedtarget image.The
�nal imageT 0 is obtainedby converting the luminancevalues
back to RGB color space.

We would like to point out that step 1 consistsof two
substeps.The�rst substepautomaticallylocatesfeaturepoints
by means of an active appearancemodel based tracking
scheme(AAM). In the secondsubstep,the user optionally
adjuststhe feature points' locations by a very few manual
interactions.Apart from this, step 2, 3, 4, 5 are carried out
automatically.

Fig. 9. (a) Triangulationof imagepixels. (b) An enlargedregion of an input
imageandthe correspondingimagegrid (c).

A. 2D Imagesas QuadrangleMeshes

In order to make the face image data accessibleto our
VTC-baseddeformationscheme,we needto transformthem
into a 3D surface.The imagecan either be transformedinto
a triangle meshor a quadranglemesh.We found the latter
method to be more convenient, as no explicit triangulation
needsto becarriesout.As opposedto 3D expressionmapping,
we don't intend to use the VTC-baseddeformationtransfer
to model the overall changeof the target face's geometry.
Instead,we employ it to accuratelytransfer the changesin
the sourceface's textural appearancebetweenS and S0 onto
the target face.Hence,our facerepresentationneedsto enable
us to appropriatelyformulateper-pixel appearancevariations.
We thusproposethefollowing methodto transformeachinput
imageinto a 3D imagegrid: First, the imageis transformed
into YUV color space.Now, as opposedto the triangulation
manipulationin [28], the imagepixels aretreatedasvertices
on a quadranglemesh,as it is illustratedin Fig. 9(a). Based
on this mesh,we assignto eachpixel p(i; j ) at image co-
ordinatesi and j a corresponding3D vertex at 3D position
(i; j ; l i;j ) whosez coordinateequalsthecorrespondingpixel's
luminancevalue l i;j . Fig. 9(b),(c).show the imagegrid.

B. GeometricImage Warping

We employ a geometricimagewarpingtechniqueto transfer
the global changeof the face's shapebetweenthe source
neutralandthesourceexpressive imageonto thetarget image.
To this end,we triangulatethe locationsof themarked feature
points in the target neutralimageT. The target neutralimage
is warped[34] by applying the motion of the featurepoints
betweenS andS0 to thecorrespondingfeaturepointsin T. We
exploit the texture mappingcapability of the GPU to render
the completewarpedtarget imagevery quickly.

C. CorrespondenceFinding

The geometricwarping appliesthe coarsechangesin the
sourceface's shapebetweenS andS0 onto the target neutral
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face. However, the warped target face does not yet look
convincingsince,sofar, thechangesin surfacetexturehavenot
beenconsidered.We make useof our VTC-baseddeformation
transfer approachto compute the correct pixel values of
the face in T 0. To this end, we need to establishper-pixel
correspondencesbetweenthe sourceneutralandthe (aligned)
targetneutralfaceimage.This is thesameasestablishingper-
vertex correspondencesbetweenthe respective image grids.
We thusresamplethesourceimagegrid suchthat its topology
becomesthesameastheoneof thetarget imagegrid. In other
words, for eachpixel in target image,i.e. eachvertex in the
targetimagegrid, we �nd thecorrespondingpixel in thesource
image,i.e. the correspondingvertex in the sourceimagegrid.

D. AppearanceTransfer

With thesedensecorrespondencesbetweensourceand tar-
get at hand,we can computethe pixel valuesin T 0. This is
straightforwardly achieved by formulating(4) in termsof the
luminancecomponentsof all the involved image grids, and
solving for the luminancevaluesof deformedtarget image.
The �nal color of the target expressive imageis obtainedby
transformingthe YUV colorsback into RGB space.

In comparisonto the algorithmproposedin [6] our method
hasa coupleof intriguing advantages.First, we do not needto
applyanadaptive Gaussian�lter to correctartifactscausedby
imageregistrationerrors.Thepixel valuesin T 0 arecomputed
globally and thus local misregistrationshave a much smaller
in�uence on the overall visual quality. Moreover, becausethe
warping on the target image is carried out in advance,it is
unnecessaryto re-computethe i and j componentsof the
vertices(i; j ; l i;j ) of the target image repeatedly. The linear
systemonly needsto be solved in the luminancecomponent
l i;j of the imagegrid.

In our implementation,the positionsof the featurepoints
closeto the facecontourareadjusteda bit to lie on the inside
of the edge.This way, we can avoid that the contourof the
sourcefaceis mappedonto the target faceby mistake.

VI I . RESULTS AND DISCUSSION

Our VTC-basedexpressionanalogymethodproducescom-
pelling results on both 2D and 3D data. To validate our
approachwe comparedit to well-known related techniques
from the literature, namely ExpressionCloning [14] and
deformationtransfer[15] in the 3D case,andexpressionratio
images(ERI) [6] in the 2D case.

Our test input datafor 3D facial expressionanalogycom-
priseof a sequenceof 300framesthatshows thedynamicface
geometryof a performinghumanactor. The datawerekindly
provided to us by the authorsof [9] who capturedthe footage
with their real-timefacescanner. We implementedexpression
cloning, deformationtransferand our VTC-basedmethodto
transferthis expressionsequenceontothreefacescansof other
testpersons.It is our intentto clearlyshow thegeometricdetail
in the3D targetanimations.In particularin orderto make the
subtledeformationin theresultsbettervisible,weshow our3D
resultswithout textures.In principle,however, the application
of a texture would be straightforward. A comparisonof the

obtainedresultsis shown in Fig. 10.As previously mentioned,
basic facial expressioncloning leadsto unwantedgeometry
artifactson thetargetface,e.g.closeto thecheeks.In contrary,
mesh-baseddeformationtransfer [15] and our VTC-based
methodleadto visually morepleasingresults.To evaluatethe
quality of the resultsobtainedby the latter two methods,we
mappedthe expressionto the sourceneutral face itself and
calculatethe per-vertex error (detailederror calculationsare
includedin appendix).Due to different 3D surfaceencoding
strategy and deformation transfer algorithm, even mapping
the expressionto itself, there are still different error values
betweendifferent approaches.In Fig. 11, we utilize different
colorsto representdifferenterrorquantitylevels.Thedepicted
errorsarein therangeof < 0:1% (green),[0:1%; 0:5%) (blue)
and [0:5%; 2:0%) (red). One can see that our VTC-based
methodleadsto a high reconstructionaccuracy in thoseparts
of thefacethatcarrymostof theexpressive detail,suchasthe
vicinity of the eyesandthe mouth.Furthermore,in Fig. 8 we
show that VTC-basedexpressionanalogyconvincingly maps
source expressionsto target subjectswith widely different
physiognomies.We would like to point out that during the
expressionanalogy, the featurepoints enforcethe structural
coherencebetweenthe neutral faceand the expressionface.
If the feature points correspondingto the cheek-bonesare
not locatedprecisely, the cheek-bonesarenot preserved very
well. Therefore, care has to be taken in general that the
featurepointsare locatedappropriately. In the accompanying
video1, we show two completeanimationsequencescreated
with our approachthat demonstratethe very natural look of
the animatedfaces.

In Fig. 12, several resultsareshown that we obtainedwith
our 2D facial expressionanalogyalgorithm. They illustrate
that we can convincingly transferfacial expressionsbetween
photographsof people with different gender and different
physiognomies.Note thatour image-basedexpressiontransfer
algorithmnicely reproducesevensubtleappearancedetailson
thetargetexpressive images,suchaswrinkleson theforehead,
that do not occur in the target neutral images.Moreover, we
canmake an imageblink at you (secondrow in Fig. 12). We
also show examplesfor 2D expressioncloning, in which an
expressionis mappedin which the personopensthe mouth
(Fig. 13). Although the shapeof the mouth and the wrinkles
in the faceare faithfully reproducedin the result images,the
teetharenot.However, we don't considerthis to bea principal
limitation of our methodas any image-basedmethodsuffers
from it and it would be straightforward to apply a 2D teeth
templateto handlesucha situation.We left this asa topic of
future work, as this is not a core issueof our approach.

For validation,we comparedour methodto expressionratio
images(ERI) in Fig. 14. In theERI results,appearancedetails
in the target expressive facesaresometimesblurredwhich is
dueto registrationerrorsbetweenthe input images.Sinceour
VTC-basedmethodsolvesfor the target pixel valuesglobally,
this problem is hardly noticeablein our results.In Fig. 15,

1Accompanying video is compressedby 3ivx D4 4.5.1 codec and
it can be played normally with Quicktime player 6.x (free). In case
it can NOT be played, please download the codec software from
http://www.3ivx.com/download/
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Fig. 10. Comparisonof two 3D facial analogyapproaches:Sourcemeshes
(top row), resultsobtainedwith basic expressioncloning(2ndrow), results
obtainedwith deformationtransfer(3rd row), and resultsobtainedwith our
VTC-based3D expressionanalogyalgorithm.Row 1: 23725vertices,46853
triangles;Row 2-4: 16981vertices,33226triangles.

Fig. 11. Error characteristicand distribution: Deformationtransferbased
method(left) andVTC-basedmethod(right). Differentcolor representdiffer-
ent error quantity level: low (Green),middle (Blue) andhigh (Red)

we mappedthe sourceexpressionback to the sourceneutral
image using both ERI and our algorithm in order to assess
their respective robustness.In the ideal case, the resulting
imageexactly matchesthesourceexpressive image.While the
result producedby our algorithm closely matchesthe source
expressive image,Fig. 15(a), the ERI result exhibits clearly
noticeableartifacts,e.g. closeto the eyebrow. We'd also like
to point out that our methodfaithfully transfersexpressions
even if the lighting conditionsin the sourceandtarget images
aredifferent.In theaccompanying videowe show a few more
image-basedresults,and also demonstratethat we can make
an imagemimic a completeinput video sequenceof an actor.

Wehave measuredtheaverageCPUtimesof our3D and2D
approacheson a PentiumIV 3.0 GHz with 512 MB of mem-
ory. Pleasenote that for computationalef�ciency we always
performa LU decompositionin a preprocessingstepandonly
measurethe time neededto evaluate the right-handside of
our equationsystemsandperformback-substitution.With our

Fig. 12. VTC-based2D expressionanalogy:The left imagepair in eachrow
of facesshows a sourceneutralimage(l) anda sourceexpressive image(r).
The right imagepair in eachrow shows a target neutralimage(l) of another
personthat we madeconvincingly mimic (r) the expressionof the source
subjectin the samerow.

Fig. 13. Resultsof VTC-based2D expressionanalogywhen the personin
the target expressionimageopensthe mouth. Our methodcannotcorrectly
reproducethe appearanceof the teeth but it would be straightforward to
implant a 2D teethtemplateto handlethis situation.

3D modelscomprisingof roughly 19,000verticesand37,500
triangles it takes around 1.1 s to transfer one expression.
Moreover, our correspondence�nding methodonly takes1.5s
which is signi�cantly fasterthan the hour magnitudeneeded
by the correspondence�nding of deformation transfer on
the samedata set. In the 2D case,our methodtransfersan
expressionbetweenimagesof 311£ 419pixels in around1.3s
while ERI takes6.3 s on the sameinput data.

To summarize,our genericfacialanalogyapproachprovides
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Fig. 14. Comparisonof two 2D facial analogymethods:In eachrow the
sourceexpression(left column)is mappedontoanimageof anotherpersonby
meansof expressionratio images(ERI) (middlecolumn), aswell asby means
of ourVTC-basedapproach(right column).While ourmethodreproducesface
detailssharperthan that of ERI results,which are blurred in someregions,
e.g.aroundthe cheekin the third row.

Fig. 15. Robustnesscheck: When mapping the sourceexpressionback
onto the sourceneutral image, the original sourceexpressive image should
be reproducedas good as possible.However, the resultsobtainedwith ERI
exhibit clearly visible artifacts,e.g.closeto the eyebrow (a). Our method,in
contrast,reproducesthis imageregion very accuratelywhich demonstratesits
higher robustness(b).

animationprofessionalswith a powerful tool to animateboth
2D and3D imagesfrom exampleexpressions.

VI I I . CONCLUSION AND FUTURE WORK

Wehavepresentedanovel genericfacialexpressionanalogy
technique.It enablesus to convincingly transferfacialexpres-
sions between3D facemodels,as well as between2D face
images.In both the 3D and the 2D casesour animatedfaces
look very naturalandcorrectlymimic even subtleexpression
detailsin thesourcefaces.Moreover, our methodis fasterthan
mostrelatedmethodsfrom the literatureandalsooutperforms
themin termsof the achieved visual quality.

In future, we plan to explore if we can further reducethe
computationtime by combiningour methodwith a machine
learningapproach.We would like to improve the computing
ef�ciency by capitalizing on conceptspresentedin [26].
Furthermore,we intendto work on an fully automaticscheme
to detectfacial featureson both imagesand3D meshesmore

precisely. It seemsalso promising to apply our framework
to moregeneralimagetransformationoperations,for instance
body poseanalogyor more complex image warping opera-
tions.

IX. ACKNOWLEDGEMENT

This researchwas partly supportedby the China Post-
doctoralScienceFoundation(20060401040),Microsoft Joint
Laboratory ResearchFoundation and the National Science
Foundation of China (60502006).The authors also would
like to thank Yi Chai, NataschaSauber, Edilson de Aguiar,
Kuangyu Shi, Wenxiang Ying, and Michael Neff for their
assistance.ThanksLi Zhang and Xianfeng Gu for their 3D
facedata.Many thanksto anonymousreviewersandAssociate
Editor Prof. HoraceH.S.Ip for their works anddedications.

APPENDIX

To calculate the per-vertex error, we regard the motion
vector of eachvertex betweenthe sourceneutraland source
expressive facesas ground truth. We map the expressionto
the sourceneutral face itself and then evaluatethe error by
the following formula:

E =
¯
¯
¯ L 2 (VT E ¡ VT N )

L 2 (VS E ¡ VS N ) ¡ 1
¯
¯
¯

=
¯
¯
¯ L 2 (VT E ¡ VS N )

L 2 (VS E ¡ VS N ) ¡ 1
¯
¯
¯

WhereVSN ,VSE ,VT N ,VT E representthecoordinatesof any
vertex in sourceneutral,sourceexpressive, target neutraland
target expressive facerespectively. Here VT N = VSN for the
sourceneutral model is just the target neutral model. L 2(¢)
representsthe Euclideandistance.
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