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Abstract

We describe a method to analyze multiple synchronized
video streams by making use of a parameterized geometry
model of the recorded object. By formulating the task of
fitting the model to the images in terms of optimizing sil-
houette match, we are able to automatically and robustly
capture the time-varying 3D pose of the object. To evaluate
the energy functional, we exploit the fast image synthesis
capabilities of a conventional PC graphics card. The use
of an a-priori object model enables us to enforce kinematic
constraints as well as temporal coherence, and we obtain a
high-quality surface description as output. Suitably modi-
fied, the presented technique is also applicable to medical
and other image analysis tasks if a parameterized, generic
geometry model of the object of interest is available.

1. Introduction

When processing data collected by any type of imaging
technique, often substantial knowledge about what has been
recorded is available a-priori. Modeled in suitable form,
this information may be exploitable to efficiently constrain
image analysis and interpretation processing.

This paper presents a method to robustly capture the mo-
tion of a dynamic object from multiple synchronized video
recordings, given an adaptable geometry model of the ob-
ject. The use of a parameterized model, consisting of mul-
tiple rigid body segments, enables us to enforce kinematic
constraints as defined by the nature of the object, and to
impose temporal coherence. Besides ensuring a physically
plausible evolution of the object’s pose, these constraints
also efficiently restrict parameter search space, leading to a
robust, automatic optical motion capture algorithm.

In the following section, we briefly reflect on related
work regarding model-based analysis of image data. The
implementation of our analysis-by-synthesis approach ex-
ploiting PC graphics hardware is outlined in Sect. 3. We go
on to describe in Sect. 4 how a geometry model of a human

is automatically matched to an actor recorded with a hand-
ful of synchronized video cameras. Sect. 5 outlines how
our silhouette-based algorithm can be parallelized in order
to attain faster performance. Results of our optical motion
capture sytem are presented in Sect. 6 before we conclude
in Sect. 7 with an outlook on potential other applications for
the described technique.

2. Related Work

Methods to exploit a-priori 3D geometry information for
image analysis purposes have been investigated by vari-
ous researchers [16]. Here, we concentrate on algorithms
that make use of a parameterized geometry model to an-
alyze temporally varying scene content, recorded by syn-
chronized video cameras.

Linearized reconstruction from optical flow has been
employed to determine facial animation parameters [6] as
well as body pose [8, 2] for suitable geometry models. If
multiple video cameras are available, reconstructing 3D ge-
ometry first and then fitting a coarse human body represen-
tation to the geometry allows qualitative capture of human
motion [1, 5, 13]. The human body model can be matched
to video image content also if dense depth maps and ob-
ject silhouettes are available [15]. These approaches are
tailored specifically to their application, require additional,
error-prone pre-processing steps, or deliver only approxi-
mate results.

In contrast, we demonstrate how a high-quality, generic
geometry model can be fit robustly to video image data us-
ing only object silhouettes [4]. Matching 2D image con-
tours to projected object geometry outline has been proven
useful for estimating camera parameters [3, 11, 7, 14, 12],
and silhouette area has been used to register still pho-
tographs to scanned 3D object geometry [9, 10].

In the following, we describe in detail a silhouette-based
fitting method suitable for adapting any arbitrary geometry
model to multi-video data while simultaneously enforcing
the object’s kinematic constraints and guaranteeing a tem-
porally coherent evolution.
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Figure 1. Model-to-silhouette adaptation: The
binary, segmented video images are XORed
with the rendered model. The number of
remaining pixels is minimized by optimizing
model parameter values.

3. Silhouette-based Model Fitting

To compare the model of an object’s 3D geometry to its
appearance in multiple video images, we make use of the
object’s image silhouettes. Segmentation of the silhouette
in the video images can be achieved in various ways, e.g. by
pre-recording the static background and appropriate thresh-
olding each pixel. We render the model from all camera
perspectives and compare the model silhouette area to the
segmented video images by performing an exclusive-or op-
eration between each image’s binary silhouette mask and
the corresponding rendered model outline and counting the
number of remaining pixels, Fig. 1. The task of finding the
best parameter values matching the model to the video im-
ages then becomes an optimization problem of minimizing
the sum of set pixels.

Using image silhouettes to compare model pose to actual
object appearance has numerous advantages:

• Silhouettes can be very easily and robustly extracted,

• they provide a large number of pixels to overdetermine
the parameter search,

• silhouettes of the geometry model can be rendered
very efficiently on modern graphics hardware, and

• the XOR energy functional can be implemented en-
tirely on graphics hardware. Up to 8 binary foreground
masks from the segmented video images and the cor-
responding rendered model can be XORed simulta-
neously using the graphics card’s stencil buffer. The
number of set pixels is determined by calculating the
(binary) histogram.

On the CPU, a standard optimization algorithm (e.g. Pow-
ell’s method) iteratively alters the pose parameter values to

Figure 2. The geometry model consists of 16
rigid body parts. Each body part can be inde-
pendently scaled and its surface deformed,
while 35 joint parameters determine actual
body pose.

minimize the energy functional, as evaluated on the graph-
ics card.

To avoid local minima and to obtain accurate model pa-
rameter values, we compose our model hierarchically and
vary only subsets of model parameters simultaneously. In
addition, we perform a grid search to initialize our optimiza-
tion routine, i.e., a small number of candidate values around
predicted parameter values are considered and the energy
function evaluated. This accelerates convergence and has
been found to efficiently avoid local minima.

4 An Example: Optical Motion Capture

To illustrate how our silhouette-based algorithm works in
practice, we consider the task of capturing the complex mo-
tion of a human jazz dance performance from multiple syn-
chronized video recordings. A publically available VRML
geometry model of a human body serves as our generic ge-
ometry model, Fig. 2. The model consists of 16 rigid body
segments, one for the upper and lower torso, neck, and head,
and pairs for the upper arms, lower arms, hands, upper legs,
lower legs and feet. In total, more than 21000 triangles
make up our human body surface. All body segments are
connected by a kinematic chain, resembling the anatomy
of the human skeleton. 17 joints with a total of 35 joint
parameters define the pose of our virtual character. Since
our model parameterization is based on human anatomy, we
can incorporate additional knowledge about what a human
dancer can and cannot do, thus constraining the outcome of
our optimization to only plausible results.

Since we start out with a generic body model, the ini-
tial geometry will not have the same proportions as its hu-
man counterpart. Therefore, the model dimensions must
be adaptable to match the size and proportions of the hu-
man dancer. To this purpose, each rigid body segment can
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Figure 3. The body parts are fit to the images
in hierarchical order: The torso first, then the
upper arms, legs and the head, and finally
the lower arms, legs, hands and feet. In con-
junction with a small exhaustive grid search
around some parameters’ predicted value for
optimization intialization, local energy func-
tional minima are efficiently avoided.

be scaled along its underlying anatomical bone structure.
In addition, a local Bézier parameterization of the triangle
mesh allows us to non-uniformly deform each body seg-
ment’s surface by tweaking 16 control parameters per seg-
ment. This way, we can closely match the stature of the
body model to the built of the human individual in the video
images.

For model initialization, the dancer stands still for a short
moment to have his silhouette recorded from all camera per-
spectives. To adapt model proportions to the human charac-
ter, first, only the body torso is considered and its position
and orientation is approximately found by maximizing the
overlap with all silhouettes. Then the pose of arms, legs and
head are recovered by first rendering each limb in a num-
ber of orientations and selecting the best match as intial-
ization for a refined optimization. After the generic model
has been approximately fit, the uniform scaling parameters
of each body segment are adjusted. The algorithm then al-
ternates between optimizing joint parameters and body seg-
ment scaling parameters until it has converged to the true
pose and proportions of the person. Once the correct body
pose and body segment proportions have been found, the
Bézier control parameters of all body segments are opti-
mized to match each segment’s outline to the recorded sil-
houettes.

In the following, only the 35 joint parameters are var-
ied to capture the pose of the dancer over time. With our
individualized geometry model, we determine the joint pa-
rameter values for each time instant such that our model
closely follows the motion of the human character. Model
parameter estimation is performed in hierarchical order with
respect to their impact on silhouette appearance and their
position in the model’s kinematic chain, Fig 3. To find the
correct joint parameter values at a time instant t + 1 from
the current pose, we make use of the parameter values’ his-
tory and predict their new values from their recent rate of

Figure 4. Grid search initialization: To avoid
local minima, optimization of some joint pa-
rameters is preceded by testing a few param-
eter values in the vicinity of the predicted po-
sition.

change. The model is hierarchically updated: First, posi-
tion and orientation of the torso are varied to find the 3D
location of the body. Next, upper arms, thighs and head are
considered. Finally, the lower extremities as well as hands
and feet are regarded.

To make sure we do not end up in a local minimum, we
additionally perform a grid search in parameter space for
some joints, Fig. 4: A small number of candidate parameter
values around the predicted new value are considered and
the energy function evaluated. The optimization routine is
then intialized with the best set of parameter values of the
grid search.

One last constraint we have to enforce is the avoidance
of inter-penetrations of different body segments. By test-
ing against all segments’ bounding boxes during our grid
search, we ensure that all parameter values correspond to a
plausible, non-interpenetrating body model.

5. Parallelized Silhouette Fitting

Our silhouette-matching approach is an iterative al-
gorithm that converges robustly towards the best set of
joint parameter values. Employing Powell’s optimization
method on a 1.8 GHz PC and evaluating the energy func-
tional on a GeForce3 graphics card, human pose analysis
takes between 8 and 14 seconds per time instant. How-
ever, our algorithm is easily parallelizable such that multi-
ple computers and graphics cards can work simultaneously
on estimating pose parameters [17]. Since the root node of
the kinematic chain, the lower torso, branches into 5 sep-



Figure 5. Parallelized implementation: Each
body extremity is evaluated on one PC /
graphics board.

arate body parts, the poses of all four extremities and the
head can be determined independently once torso position
and orientation are known, Fig. 5. Five personal computers
with graphics cards can therefore work on estimating the
correct model parameters in parallel. After the server PC
has determined the 6 degrees of freedom of torso position
and orientation, each of the four client PCs and the server
each optimize only one arm, leg, and the head. The video
images are windowed around each body part’s approximate
position and are transferred via conventional ethernet to the
corresponding client. To reduce the influence of other body
parts during separate body limb optimization, the entire ge-
ometry model is rendered once without the body segment
in question, and all covered silhouette pixels are discarded,
Fig. 6. While this masking operation cannot eliminate all
pixels stemming from other body parts, it nevertheless ef-
ficiently reduces the number of non-optimized pixels and
raises the score of those pixels belonging to the body part
whose pose is being optimized. This way, only that body
segment is locally rendered whose pose parameters are to
be found during optimization, and it is compared only to
the non-masked image silhouette pixels. This also reduces
the number of triangles to be rendered.
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Figure 6. Body parts not optimized by one
client computer are masked prior to optimiza-
tion to exclude them during energy functional
evaluation.

Figure 7. Fitted geometry model and three
corresponding input video images of its hu-
man counterpart.

The parallelized implementation of our silhouette-based
model fitting algorithm currently reduces the time it takes to
estimate full body pose by a factor of 10 down to less than
2 seconds per frame.

6. Results

Given eight input video streams, our model-based analy-
sis approach robustly captures the motion of the dancer 1,
Figs. 7, 8. On a single PC with an nVidiaTMGeForce3
graphics card, pose estimation takes between 8 and 14 sec-
onds per time instant. When optimizing each body limb
on a separate PC, pose estimation time reduces to less than
2 seconds per time step.

While we have presented here a non-invasive human mo-
tion capture system, it should be noted that the model-based
video analysis approach is generally applicable to any arbi-
trary object that can be represented by a number of inter-
connected rigid body segments, or by a suitably parameter-
ized non-rigid object model.

Exploiting the graphics card’s stencil buffer, the error
functional can be evaluated on any modern graphics card.
With an nVidia GeForce3 card, more than 100 evaluations
can be performed per second taking into account 8 complete
camera images simultaneously. Only the Powell optimiza-
tion algorithm needs to run on the CPU.

One valuable advantage of our model-based object anal-
ysis approach is the low-dimensional parameter search

1movie samples can be found at www.grovis.de/fvv



Figure 8. Model-based multi-video analysis of
a jazz dance performance.

space, since out model parameterization provides only a
few dozen degrees of freedom to match model and image
silhouettes. In addition, constraints on parameter values are
easily enforced by making sure that during optimization,
all parameter values stay within their anatomically plausible
range. Finally, temporal coherence is maintained by allow-
ing only a maximal change in magnitude for each parameter
from one time step to the next.

7. Conclusions

We have presented a model-based video analysis method
that relies solely on object silhouette information. In an
analysis-by-synthesis loop, we exploit the fast rendering ca-
pabilities of conventional PC graphics hardware to match
model outline to image silhouettes. The approach robustly
determines 3D object pose, taking into account kinematic
constraints and maintaining temporal coherence.

The algorithm is potentially applicable to a wide range of
image analysis and interpretation tasks. Wherever a param-
eterized geometry model of a recorded object is available
and object silhouette can be (even coarsely) determined,
silhouette-based analysis-by-synthesis can be applied. In
addition, the approach can be easily extended to 3D volume
data. For example, in medical image analysis the surface
of a parameterized organ model can be matched to three-
dimensional CT or MRI data to identify and further process
the organ’s voxels, e.g., for later automated diagnosis.
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