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Abstract

One fundamental assumption in pattern classification prob-
lems is that the data generation process lies on a manifold.
This holds true for several algorithms for diffusion and reg-
ularization, e.g., in graph-Laplacian-based algorithms. Exist-
ing algorithms can be improved if we additionally account
for how the manifold is embedded within the ambient space
— if we consider the extrinsic geometry of the manifold. We
characterize the extrinsic curvature of a manifold, and use
this in anisotropic diffusion and regularization. The result-
ing re-weighted graph Laplacian demonstrates superior per-
formance over classical graph Laplacian in semi-supervised
learning and spectral clustering.

Figure 1: Controlling diffusivity depend-
ing on curvature: diffusivity is large along
flat paths (red); small along the curved
path (blue).

Anisotropic diffusion on manifolds:
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D: a positive definite (p.d.) operator that controls the strength
and direction of diffusion.

—Apf:=divDgrad f,

Characterizing curvature on a sub-manifold M/ ¢ R" —
the second fundamental form:
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{z',...,2™} and {y',...,y"}: local coordinates in M and

R™, respectively. Embedding:

yi:yi(ﬂfl’-”,aﬁm) -|=Ori:1,.”’n7
’agm}:{i/la-”aym}-

and {52, ...

Constructing D from /T — the shape operator:

Figure 2: Applying the diffusivity operator D,: (Left) The
black input vector is orthogonal to the direction where M
has no curvature, and so the red output vector is identical;
(Right) Input parallel to the maximally curved direction of M
causes maximum output shrinkage. (Middle) In general, the
input vector is shrunk depending on how M is curved.

Practical algorithm — re-weighted graph Laplacian:
Hessian H' estimated based on locally fitting quadratic poly-
nomials. Scalar-valued diffusivity operator d,, scales the weight
(adjacency) matrix W in the standard graph Laplacian:

L=G-W,

G: column sum of W.

Results:
Theorem: estimated /I converges to analytic version.

Table 1: Classification performance (error rate) of graph
Laplacian (Lap) and re-weighted graph Laplacian (r-Lap).

Algorithm USPS COIL2 BCI Text C-PASCAL

Lap 6.72 0.47 3719 223 10.63

r-Lap 5.78 0.41 35.67 20.8 9.83
Improvement (%) 14.00 12.77 4.09 6.73 6.02
Lap (GT) 5.92 0 3260 20.9 8.89

r-Lap (GT) 4.94 0 2594 19.9 8.20
Improvement (%) 15.55 0 2043 4.79 7.40

Table 2: Clustering performance of Lap and r-Lap; m: mani-
fold dimensionality.

m n _ Algorithm  Lap r-Lap
s = Z Z “HZ‘P]TS g 0 dsda”, m  Errorrate  Improvement (%)
rs,0=1i=m+1 2 0.23 -4.54
. o _ . , 3 0.28 -27.27
H'*: Hessian in {z'}; |Alp: a p.d..vers_lon of a matrix A. USPS 022 4 015 31.82
s expands the input vector into direction of high curvature. 5 0.21 454
Our vector-valued diffusivity operator D,, at point p: 6 0.24 -9.09
D, = (S, +I)7", 2 0.19 38.71
_ , _ 3 0.21 32.26
S, is @ matrix representation of s. MNIST 031 4 0.32 -3.23
Scalar-valued diffusivity operator d,: 5 0.25 19.35
6 0.32 -3.23
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