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We show the pointwise convergence of the estimate of the second fundamental form (obtained from a point
cloud) to the corresponding analytical operator on a manifold as the number of data points grows to infinity. Our
proof is based on two assumptions on the regularity of the underlying probability distribution on the manifold M
and the boundedness of the corresponding second fundamental form. Please note that we use different notation
than in the main paper and so this proof is self-contained.

A toy example. Before we start to discuss the convergence property, we present empirical convergence behavior
of our estimate for a toy example. We focus on the estimate of the second fundamental form II at point p where
manifoldM is given as a hyper-surface in Euclidean space. In this case, locallyM can be represented as a graph of
a function f , which facilitates the direct comparison between the ground truth II and our estimate ÎI . Specifically,
we consider a two-dimensional manifold M embedded in R3, which is given as a graph of f around 0:

f(x) = 2x
(3)
1 − x

(2)
2 + 0.5x1x2, (1)

where x ∈ R2. The point cloud X = {Xi}ni=1 ⊂ R3 is generated by sampling n points from a uniform distribution
in an ε-neighborhood of 0 in R2 and evaluating f on them. The error Ep for an estimate ÎIp is then calculated by
measuring the squared norm of the resulting deviation tensor:

E(ÎIp) = ‖ÎIp − IIp‖2T∗
p (M)⊗T∗

p (M)⊗Np(M), (2)

where T ∗p (M) denotes the cotangent space of M at p. We measured the error for ε = 10, 1, 10−1, 10−2, 10−3

where n varied accordingly in 102, 103, 104, 105, 106. Table 1 summarizes the results of ten different samples of
X for each parameter combination. The error converges toward zero as expected.

ε 10 1 10−1 10−2 10−3

n 102 103 104 105 106

Error Mean 93.03 6.86× 10−2 9.22× 10−5 1.21× 10−7 5.11× 10−11

Std. 56.71 4.21× 10−2 7.73× 10−5 1.02× 10−7 3.91× 10−11

Table 1: Estimation error of the second fundamental form for varying ε and n (see Eq. 2).

1 Problem statement & proof outline

In Section 3 of the main paper, we adopt an adapted orthonormal frame for each p in the ambient manifold M̃
from which the Riemannian normal coordinates {yi} are constructed. With this, the calculation of the second
fundamental form II of M (of dimension d) embedded in M̃ boils down to the calculation of the Hessians {Hyi}
of coordinate values {yi} at each p. We assume throughout this document that M̃ = Rd̃ and so any orthonormal
basis in Rd̃ constitutes a normal coordinate system. In particular, our PCA-based coordinate assignments are exact
in M̃ . On the other hand, calculating the shape operator explicitly requires the knowledge of the metric g in M
(Eq. 9 in the main paper). By introducing the Riemannian normal coordinates x at p inM and accordingly, making
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gp become δ up to the second order, the estimated second fundamental form automatically gives the shape operator
given the orthonormal frame in Rd̃ (see “Generalized shape operator” paragraph of the main paper.). However,
this introduces an approximation error since our PCA-based coordinate values are, in general, not exact normal
coordinates in M .

Suppose that we are given a sample generation process from an underlying probability distribution P on a
manifold M such that, at each instance in time, we have a set of data points X = {x1, . . . ,xn} ⊂M ⊂ Rd̃. First,
we discuss the convergence of the estimated second fundamental form as n → ∞. Then, the convergence of the
estimated shape operator is established by additionally taking into account the approximation error introduced by
using PCA coordinates for the normal coordinates x. Since the convergence property is the same for each element
of {Hyi}, we use the symbol f to denote any one element yi.

At each data point xα ∈ X , the Hessian Hf |xα of f is estimated by fitting a quadratic polynomial pα to
f |Nε(xα), where Nε(xα) = {g1, . . . ,gl} := B(xα, ε) ∩ X , B(x, ε) is the ε-neighborhood of x,1 and h|S denotes
the restriction of a function h on a set S: The Hessian Hpα |xα of the polynomial pα is used as an estimate of
Hf |xα .

The coefficients of polynomial pα are obtained by solving a weighted least squares problem centered at xα:

Aα ≈ Bα = argmin
Q
‖Kα(XαQ− f)‖2

= (X>αKαXα)
−1X>αKαf , (3)

where Xα is the design matrix containing the second-order monomials of the data points in X centered at xα (i.e.,
each element xi of X is replaced by xi − xα; see Eq. 7):

Aα =
1

2
[[Hf |xα ]1,1, [Hf |xα ]1,2, . . . , [Hf |xα ]d,d]

>
, (4)

Bα =
1

2
[[Hp|xα ]1,1, [Hp|xα ]1,2, . . . , [Hp|xα ]d,d]

>
,

f = [f(x1), . . . , f(xl)]
>,

and Kα is a diagonal weight matrix with [Kα]i,i = K(xi − xα, ε) and the kernel K is defined as:

K(x, h) = 1[‖x‖<h]. (5)

In any coordinate {xi} in M , the zeroth- and the first-order terms of {yi} vanish (f(xα) = 0,∇f |xα = 0)
since { ∂

∂xi }
d
i=1 spans the tangent space TαM . In this context, the zeroth- and the first-order terms of the fitting

polynomial are held fixed at 0.
For notational convenience, henceforth we will assume that the point of evaluation xα is 0 unless explicitly

stated otherwise and we will omit the index α. All the other locations of interest can be treated in the same way by
simply replacing the corresponding locations with the origin.

The point-wise convergence of the second fundamental form is established when ‖A−B‖ → 0 as n→∞ and
ε→ 0. First, we bound it by two multiplicative terms:

‖A−B‖2 ≤ ‖(X>KX)−1‖2‖K(XA− f)‖2, (6)

where the first term depends only on the distribution P on M and it is upper bounded as:

‖(X>KX)−1‖2 ≤
1

‖nεdE−1BE−1‖2
≤ 1

nεd+4λB
, (7)

where:

E = diag([1/ε2, . . . , 1/ε2]>),

B =
1

nεd

n∑
i=1

X(xi/ε)
>X(xi/ε)K(xi, ε),

X(x) = [. . . , xrxs, . . . , ] ∈ RD(D =
d(d+ 1)

2
),

1For simplicity, we use the ε-neighborhood B(x, ε) := {y ∈ Rd̃ : ‖x − y‖ ≤ ε} instead of k nearest neighbors Nk(x).
The convergence in the latter case can easily be established by enforcing Nk(x) ⊂ B(x, ε).
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and λB is the smallest eigenvalue of B. In Sec. 3, we quantify λB using a certain regularity condition on P : If the
distribution P on M satisfies the strong density assumption [Audibert and Tsybakov, 2007], then with probability
larger than 1−D2 exp(−C2nε

d) with C2 being a positive constant, there is a constant µ0 > 0 such that λB ≥ µ0.
Bounding the second term in Eq. 6 requires that the curvature of M is bounded such that the local fitting

polynomials constitute good approximations of II in the limit. With this condition, we obtain:

‖K(XA− f)‖2 ≤ C1γ
2lε6 (8)

with constants C1, γ > 0 depending only on the bound on the curvature of M and l = |Nε(0)|.
Substituting Eq. 7 and Eq. 8 into Eq. 6, we obtain with probability larger than 1−D2 exp(−C2nε

d):

‖A−B‖2 ≤ C1lγ
2

nεd−2µ0
. (9)

This implies that when ε → 0, n grows with a sufficient speed such that l
nεd

= O(1) (as shown in Sec. 4),
‖A−B‖2 → 0.

The rest of this document elaborates the construction of the bounds in Eq. 7 and Eq. 8.

2 Bound on ‖K(XA− f)‖2 (8)
In Section 3 of the main paper, we constructed the coordinates in M using the first d components of the (PCA-
based) Riemannian normal coordinates {y1, . . . , yd̃} at each point p in M̃ = Rd̃. Using this coordinate repre-
sentation and with the Lipschitz continuity of the Hessian Hf , we show the pointwise convergence of II . We
will use the stronger boundedness condition when we take into account the approximation error caused by using
{y1, . . . , yd} for the Riemannian normal coordinates in M and show the convergence of the shape operator.
Lemma 1 ([Belward et al., 2008]). Suppose that the Hessian (Hf (a) := Hf |a) is Lipschitz continuous with the
Lipschitz constant γ. Then

‖K(XA− f)‖22 = C1γ
2lε6 (10)

with a constant C1 > 0 where l is the size of Nε(0).

Proof. Since Nε(0) = {g1, . . . ,gl} = X ∩ B(0, ε), each point gi lies in both M and Rd̃. As a point in M , gi
is assigned with a d-dimensional coordinate values. We represent it with hivi with ‖vi‖ = 1 and hi ≥ 0. By
construction, hi ≤ ε.

Applying the first-order Taylor series remainder formula to f expanded at 0 gives for each point gi,

f(hivi) =

∫ 1

0

(1− t)hiv>i Hf (hivit)hividt,

⇔ f(hivi)−
1

2
hiv
>
i Hf (0)hivi =

∫ 1

0

(1− t)hiv>i (Hf (hivit)−Hf (0))hividt, (11)

where we used the fact that f(0) = ∇f |0 = 0 when f corresponds to yi (i = d+ 1, . . . , d̃).
Substituting in the definition of A (Equation 4) into (11) gives [K(XA− f)]i = 0 when [K]i,i = 0 and

|[K(XA− f)]i| =
∣∣∣∣12hiv>i Hf (0)hivi − f(hivi)

∣∣∣∣
≤
∫ 1

0

∣∣(1− t)hiv>i (Hf (0)−Hf (hivit))hivi
∣∣ dt

≤
∫ 1

0

∣∣(1− t)hiv>i (γthi)hivi∣∣ dt
=

1

6
γh3i , otherewise. (12)

Then

‖K(XA− f)‖2 =

n∑
i=1

[K(XA− f)]2i ≤
1

36
lγ2ε6, (13)

where we used the fact that only l summands are non-zero and hi ≤ ε. �
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Correction in normal coordinates: convergence of the shape operator estimate (given an orthonormal
frame {Yi}ni=1). In general, PCA-based estimates {y1, . . . , yd} of the normal coordinate values {x1, . . . , xd}
at a point in M contain errors of the second order (see the main paper and [Belkin and Niyogi, 2005,
Coifman and Lafon, 2006]).2 Here, we represent the PCA-based estimates and the true Riemannian normal co-
ordinates of gi with h̃iṽi(‖ṽi‖ = 1) and hivi(‖vi‖ = 1), respectively.

Expanding f(h̃iṽi) at 0, we obtain3

1

2
h̃iṽ
>
i Hf (0)h̃iṽi − f(h̃iṽi) =

∫ 1

0

(1− t)h̃iṽ>i
(
Hf (0)−Hf (h̃iṽit)

)
h̃iṽidt,

⇔ 1

2
h̃iṽ
>
i Hf (0)h̃iṽi − f(hivi) =

∫ 1

0

(1− t)h̃iṽ>i
(
Hf (0)−Hf (h̃iṽit)

)
h̃iṽidt+

(
f(h̃iṽi)− f(hivi)

)
,

⇔ |[K(X̃A− f)]i| ≤
1

6
γh̃3i +

∣∣∣f(h̃iṽi)− f(hivi)∣∣∣ , (14)

where the approximate design matrix X̃ is constructed based on the PCA-based estimates of normal coordinate
values. Expanding f(hivi) and f(h̃iṽi) at 0, we obtain

f(h̃iṽi) =

∫ 1

0

(1− t)h̃iṽ>i
(
Hf (h̃iṽit)−Hf (0)

)
h̃iṽidt+

∫ 1

0

(1− t)h̃iṽ>i Hf (0)h̃iṽidt, (15)

f(hivi) =

∫ 1

0

(1− t)hiv>i (Hf (hivit)−Hf (0))hividt+

∫ 1

0

(1− t)hiv>i Hf (0)hividt. (16)

With the boundedness of the second fundamental form (in the second summands) and (12), (15) and (16) imply
that there is a constant η such that

|f(hivi)− f(h̃iṽi)| ≤
η

2
|h2i − h̃2i |+

γ

6
|h2i − h̃2i |. (17)

Substituting this into (14) and noting that h2i = h̃2i + O(h4i ) ([Belkin and Niyogi, 2005,
Coifman and Lafon, 2006]), we obtain

|[K(X̃A− f)]i| = O(h3i ). (18)

Accordingly, ‖K(X̃A− f)‖2 remains O(ε6) since hi ≤ ε.

3 Bound on λB
Here, we adopt the results of [Audibert and Tsybakov, 2007] to construct a lower bound of λB . Applying this
result requires a certain regularity assumption on the underlying probability distribution P on M .

For some constants c0, r0 > 0, we will say that a Lebesgue measurable set A ⊂ Rd is (c0, r0)-regular if

λ[A ∩ B(x, r)] ≥ c0λ[B(x, r)], ∀r ∈ [0, r0],∀x ∈ A, (19)

where λ[S] stands for the Lebesgue measure of S ⊂ Rd. We fix constants c0, r0 > 0 and 0 < µmin < µmax <∞
and a compact C ⊂ Rd. We say that the strong density assumption is satisfied if the distribution P is supported on
a compact (c0, r0)-regular set A ⊆ C and has a density µ w.r.t. the Lebesgue measure bounded away from zero
and infinity on A (between µmin and µmax)

µmin ≤ µ(x) ≤ µmax, ∀x ∈ A and µ(x) = 0 otherwise. (20)

Theorem 1 ([Audibert and Tsybakov, 2007]). Let P satisfies the strong density assumption. Then, there exist
constants C2, µ0 > 0 such that for any 0 < ε ≤ r0 and any n ≥ 1,

P⊗n(λB ≤ µ0) ≤ 2D2 exp(−C2nε
d), (21)

where D = d(d+1)
2 and P⊗n is the product probability measure according to which the sample is distributed.

2The injectivity radius inj(xα) of xα ∈ X is always positive [Klingenberg, 1982]. Here, we assume that ε(xα) ≤ inj(xα).
3It should be noted that although we are constructing the series expansion based on empirical estimates (i.e., with h̃iṽi

instead of hivi), the corresponding function is evaluated at gi ∈M and accordingly, it should be written as f(hv) rather than
f(h̃ṽ).
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It should be noted that in the current context, n = |X | while l(n, ε) = |Nε(0)|.

Proof. Let A be the support of P , which contains xα.4 Consider the matrix B(ε) := [B̃(j,k)]D,D =

[
∫
‖u‖<1

[
X(u)>X(u)

]
(j,k)

µ(εu)du]D,D.

The smallest eigenvalue λB of B satisfies

λB = min
‖W‖=1

W>BW

≥ min
‖W‖=1

W>BW + min
‖W‖=1

W>(B −B)W

≥ min
‖W‖=1

W>BW −
∑
j,k

|Bj,k −Bj,k|. (22)

Let An := {u ∈ Rd : ‖u‖ ≤ 1; εu ∈ A}. For any vector W satisfying ‖W‖ = 1, we obtain

W>BW =

∫
‖u‖<1

W>X(u)>X(u)Wµ(εu)du

≥ µmin

∫
An

W>X(u)>X(u)Wdu. (23)

By assumption of the theorem, ε ≤ r0. Since the support of P is (c0, r0)-regular, we get

λ[An] ≥ ε−dλ[B(0, ε) ∩A] ≥ c0ε−dλ[B(0, ε)] = c0υd,

where υd = λ[B(0, 1)] is the volume of the unit ball and c0 > 0 is the constant of the (c0, r0)-regular set. Let A
denote the class of all compact subsets of B(0, 1) having Lebesgue measure c0υd. Using the previous displays we
obtain

min
‖W‖=1

W>BW ≥ µmin min
‖W‖=1;S∈A

∫
S

W>X(u)>X(u)Wdu := 2µ0. (24)

By the compactness argument, the minimum in (24) exists and is strictly positive.
For i = 1, . . . , n and any indices (j, k), define

Ti(j, k) :=
1

εd
[
X(xi/ε)

>X(xi/ε)K(xi, ε)
]
(j,k)
−B(j,k)

=
1

εd
[
X(xi/ε)

>X(xi/ε)K(xi, ε)
]
(j,k)
−
∫
‖u‖<1

(
X(u)>X(u)

)
(j,k)

µ(εu)du. (25)

Since for a vector ‖u‖ < 1 and for any (j, k)∣∣∣[X(u)>X(u)
]
(j,k)

∣∣∣ ≤ 1, (26)

we have expectation E[Ti] = 0, |Ti| < 2
εd

, and the following bound for the variance of Ti:5

Var[Ti(j, k)] ≤
1

ε2d
E[
[
X(xi/ε)

>X(xi/ε)
]2
(j,k)

K(xi, ε)]

=
1

εd

∫
‖u‖<1

[
X(u)>X(u)

]2
(j,k)

µ(εu)du

≤ µmax

εd
. (27)

Using Bernstein’s inequality, for any ρ > 0, we have

P⊗n(|Bj,k −Bj,k| > ρ) = P⊗n

(∣∣∣∣∣ 1n
n∑
i=1

Ti(j, k)

∣∣∣∣∣ > ρ

)
≤ 2 exp

(
− nεdρ2

2µmax + 4ρ/3

)
.

This and (22) and (24) imply the claim of the theorem. �

4Here, we assume that the point of interest xα is contained in A. Otherwise, no sample will be generated at xα and
accordingly, there’s no need to consider this case. Without loss of generality, we will again assume that xα = 0.

5Here, the expectation is taken with respect to the distribution P which is normalized by the measure of B(x, ε) (i.e., the
distribution is conditioned upon the fact that the events are occurring within B(x, ε)).
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4 Bounding l
nεd

If we adopt the strong density assumption (see Sec. 3), the probability Pε of sampling a data point from the ε-
neighborhood of xα (which is assumed to be zero) is

Pε =

∫
A

µ(x)1[‖x−xα‖<ε]dx

≤ µmax

∫
A

1[‖x−xα‖<ε]dx

= µmax

∫
Rd
1[‖x−xα‖<ε]dx

= µmaxυdε
d, (28)

where υd = λ[B(0, 1)] and A is the support of P .
Let’s define variables {1ε(i)}

1ε(i) =

{
1 if xi ∈ Nε(xα)
0 otherwise. (29)

Applying Hoeffding’s inequality to {1ε(1), . . . ,1ε(n)} yields

P

(
n∑
i=1

1ε(i)− nPε ≥ t

)
≤ exp

(
−2t2

n

)
. (30)

Substituting (28) into (30) we obtain

P
(
l − (µmaxυd)nε

d ≥ t
)
≤ exp

(
−2t2

n

)
, (31)

which states that l
nεd

= O(1) and proves that the deviation of empirical Hessian from the true Hessian in (9)
converges to zero.
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