

DEMEA: Deep Mesh Autoencoders for Non-Rigidly Deforming Objects

Edgar Tretschk Ayush Tewari Vladislav Golyanik Michael Zollhöfer Christian Theobalt

Goal: dimensionality reduction of mesh data

- Focus on general non-rigid objects
- \rightarrow Mesh autoencoding

CoMA: Convolutional Mesh Autoencoder (Ranjan et al. 2018)

- Operations on each hierarchy level:
 - Chebyshev graph convolution (Defferrard et al. 2016)
 - Downsampling (by factor 4)

Neural 3DMM: Neural 3D Morphable Model (Bouritsas et al. 2019)

- Operations on each hierarchy level:
 - Spiral graph convolution
 - Downsampling (by factor 4)

Previous work does not explicitly model non-rigid deformations
→ DEMEA does!

- General non-rigid deformation priors from computer graphics, e.g.:
 - As-Rigid-As-Possible Deformation (Sorkine et al. 2007)
 - Embedded Deformation (Sumner et al. 2007)

Deformed position **G**(**p**) of vertex **p** is a linear combination:

$$\mathbf{G}(\boldsymbol{p}) = \sum_{l \in \mathcal{N}_{\boldsymbol{p}}} w_l(\boldsymbol{p}) \cdot \boldsymbol{T}_l(\boldsymbol{p})$$

Each graph node *I* induces its own affine transformation around its canonical position *g*_{*i*}:

$$oldsymbol{T}_l(oldsymbol{p}) = oldsymbol{R}_l[oldsymbol{p} - oldsymbol{g}_l] + oldsymbol{g}_l + oldsymbol{t}_l$$

The affine transform is parametrized by a rotation R_l and a translation t_l

Combine learning-based dimensionality reduction with model-based embedded deformation layer (EDL):

- Last layer of graph decoder regresses rotation and translation of each graph node
 - Physically interpretable intermediate representation
 - Apply EDL to obtain full mesh
 - EDL is differentiable \rightarrow can be used for backpropagation

- Four datasets of non-rigid objects:
 - Humans: Dynamic FAUST (Bogo et al. 2017)
 - Hands: SynHand5M (Malik et al. 2018)
 - Faces: CoMA (Ranjan et al. 2018)
 - Cloth: Textureless Cloth (Bednarik et al. 2018)
- Like prior work, we train category-specific auto-encoders

EDL needs embedded graphs:

9

- CA/MCA: like DEMEA but EDL is replaced with graph convolutions
- FCA: encoder and decoder are a single FC each
- FCED: like FCA but EDL is added

	DFaust		SynHand5M		Cloth		CoMA	
	8	32	8	32	8	32	8	32
CA	6.35	2.07	8.12	2.60	11.21	6.50	1.17	0.72
MCA	6.21	2.13	8.11	2.67	11.64	6.59	1.20	0.71
Ours	6.69	2.23	8.12	2.51	11.28	6.40	1.23	0.81
FCA	6.51	2.17	15.10	2.95	15.63	5.99	1.77	0.67
FCED	6.26	2.14	14.61	2.75	15.87	5.94	1.81	0.73

- DEMEA is quantitatively on par with convolutional baselines
 - But: unlike them, DEMEA has no artifacts
- FC baselines perform poorly on 8 latent dimensions, very well on 32

- DEMEA outperforms CoMA on all four datasets
- Neural 3DMM:

	DFaust		SynHand5M		Cloth		CoMA	
	8	32	8	32	8	32	8	32
N. 3DMM	7.09	1.99	8.50	2.58	12.64	6.49	1.34	0.71
Ours	6.69	2.23	8.12	2.51	11.28	6.40	1.23	0.81

Results: Qualitative

Latent dimensions: 32

Textureless Cloth (Bednarik et al., 2018)

Input

Latent dimensions: 32

Results: Qualitative

CoMA (Ranjan et al., 2018)

Input

Latent dimensions: 32

10mm

0mm

Results: Qualitative

SynHand5M (Malik et al., 2018) 15mm Latent dimensions: 8 0mm Input

Latent dimensions: 32

Applications: Image-to-Mesh

- Train on augmented synthetic data
- Apply to real Kinect depth images

Train and test on real RGB data

Latent dimensions: 32

Latent dimensions: 8

Groundtruth

4cm

0cm

Vladislav Golyanik

Applications: Interpolation

Application: Deformation Transfer

identity difference

- = latent(target)
- latent(source)

- Requires large datasets of *registered* meshes
- Currently trained per category
- Subtle deformations are difficult to capture
 - Similarly, embedded graphs can be too coarse

- DEMEA achieves mesh dimensionality reduction by combining learningbased auto-encoding and explicit deformation modelling
- Advantages shown on several datasets, especially on Dynamic FAUST
- Several applications:
 - RGB-to-mesh reconstruction
 - Depth-to-mesh reconstruction
 - Interpolation
 - Deformation transfer

For more details and results, check out our paper, supplemental video and material!

Thank you for your attention!

- Bednarik et al. (2018), Learning to reconstruct texture-less deformable surfaces (3DV 2018)
- Bogo et al. (2017), Dynamic FAUST: Registering human bodies in motion (CVPR 2017)
- Bouritsas et al. (2019), Neural 3D Morphable Models: Spiral Convolutional Networks for 3D Shape Representation Learning and Generation (ICCV 2019)
- Defferrard et al. (2016), Convolutional neural networks on graphs with fast localized spectral filtering (NeurIPS 2016)
- Malik et al. (2018), Deephps: End-to-end estimation of 3D hand pose and shape by learning from synthetic depth (3DV 2018)
- Ranjan et al. (2018), Generating 3D faces using Convolutional Mesh Autoencoders (ECCV 2018)
- Sorkine et al. (2007), As-rigid-as-possible surface modeling (SGP 2007)
- Sumner et al. (2007), Embedded deformation for shape manipulation (SIGGRAPH 2007)