
Edgar Tretschk

DEMEA: Deep Mesh Autoencoders for
Non-Rigidly Deforming Objects

Edgar Tretschk       Ayush Tewari
Vladislav Golyanik Michael Zollhöfer Christian Theobalt



Vladislav Golyanik 2

Introduction

Goal: dimensionality reduction of mesh data
– Focus on general non-rigid objects

 Mesh autoencoding
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Related Work

Hierarchical

Mesh Encoder
(graph convolutions)

 CoMA: Convolutional Mesh Autoencoder (Ranjan et al. 2018)

– Operations on each hierarchy level:

 Chebyshev graph convolution 
(Defferrard et al. 2016)

 Downsampling (by factor 4)

Hierarchical

Mesh Decoder
(graph convolutions)
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Related Work

Hierarchical

Mesh Encoder
(graph convolutions)

 Neural 3DMM: Neural 3D Morphable Model (Bouritsas et al. 2019)

– Operations on each hierarchy level:

 Spiral graph convolution 

 Downsampling (by factor 4)

Hierarchical

Mesh Decoder
(graph convolutions)
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Motivation

 Previous work does not explicitly model non-rigid deformations
 DEMEA does!

Dynamic FAUST: Bogo et al. 2017
SynHand5M: Malik et al. 2018
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Deformed position G(p) of vertex p is a linear 
combination:

Background

 General non-rigid deformation priors from computer graphics, e.g.:

– As-Rigid-As-Possible Deformation (Sorkine et al. 2007)

– Embedded Deformation (Sumner et al. 2007)

The affine transform is parametrized by a 
rotation Rl and a translation tl

Each graph node l induces its own affine 
transformation around its canonical position gl:
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Method

 Combine learning-based dimensionality reduction with model-based 
embedded deformation layer (EDL):

– Last layer of graph decoder regresses rotation and translation of each graph 
node 

 Physically interpretable intermediate representation

 Apply EDL to obtain full mesh

– EDL is differentiable  can be used for backpropagation

EDL
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Data

 Four datasets of non-rigid objects:

– Humans: Dynamic FAUST (Bogo et al. 2017)

– Hands: SynHand5M (Malik et al. 2018)

– Faces: CoMA (Ranjan et al. 2018)

– Cloth: Textureless Cloth (Bednarik et al. 2018)

 Like prior work, we train category-specific auto-encoders
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Data: Embedded Graphs

 EDL needs embedded graphs:
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Results: Baselines
 CA/MCA: like DEMEA but EDL is replaced with graph convolutions

 FCA: encoder and decoder are a single FC each

 FCED: like FCA but EDL is added

 DEMEA is quantitatively on par with convolutional baselines
– But: unlike them, DEMEA has no artifacts

 FC baselines perform poorly on 8 latent dimensions, very well on 32
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Results: Prior Work

 DEMEA outperforms CoMA on all four datasets

 Neural 3DMM:
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Results: Qualitative
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Results: Qualitative
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Results: Qualitative
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Results: Qualitative
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Applications: Image-to-Mesh
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Applications: Image-to-Mesh

 Train on augmented synthetic data

 Apply to real Kinect depth images
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Applications: Image-to-Mesh

 Train and test on real RGB data
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Applications: Interpolation
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Application: Deformation Transfer

identity difference 
= latent(target) 
- latent(source)

+ identity
difference 
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Limitations

 Requires large datasets of registered meshes

 Currently trained per category

 Subtle deformations are difficult to capture

– Similarly, embedded graphs can be too coarse
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Summary

 DEMEA achieves mesh dimensionality reduction by combining learning-
based auto-encoding and explicit deformation modelling

 Advantages shown on several datasets, especially on Dynamic FAUST

 Several applications:

– RGB-to-mesh reconstruction

– Depth-to-mesh reconstruction

– Interpolation 

– Deformation transfer
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For more details and results, check out our 
paper, supplemental video and material!

Thank you for your attention!
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