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Abstract

We present a novel method to animate a static geometry by cloning a captured animation sequence. More precisely,

given a sequence of range scans of a deforming object which has been captured by a real-time 3D scanner,

we describe a novel algorithm to clone the animation of the recorded geometry onto another triangle mesh.

To achieve this, we reconstruct a coherent animated mesh of the input sequence using a template deformation

approach. Then we employ a new algorithm for robust marker-less non-rigid registration to deform one frame of

the generated animation such that it matches a different 3D model.The resulting registration is further used to find

correspondences between the animation and the target object which are in turn used to transfer the animation of

the recorded sequence onto the target shape.

Transferring the entire geometry of the animations results in very convincing facial expressions since even the

smallest expression wrinkles are preserved. We evaluate the robustness and the performance of the proposed

algorithms using a variety of data sets, including facial animations and whole body animations.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.7]: Animation—Computer
Graphics [I.3.5]: Curve, surface, solid, and object representations—

1. Introduction

An essential step in the production of digital content for fea-
ture films and computer games is the generation of realistic
and lifelike animations of human characters. For full body
animations, skeletal shape deformation has established as
de-facto standard as it offers numerous advantages: Perfor-
mances can be recorded relatively easily using marker based
motion capturing techniques. Furthermore, skeletal anima-
tions can be efficiently transferred onto different characters
as it involves only an additional skinning step. However,
skeletal animation has a major drawback: Traditional meth-
ods for skeletal deformation are not able to reproduce ef-
fects like muscle bulge or skin wrinkles. Since humans are
very susceptible to subtle changes of facial expressions, fa-
cial performances cannot be handled adequately using skele-
tal deformations.

To capture facial animations, usually several hundred
markers are applied to an actor’s face and tracked by high-
resolution cameras. The captured marker positions are then
used to drive the animation of a digitized model of the ac-
tor’s face. To determine how the model deforms between the
recorded markers, various heuristics can be used. However,

Figure 1: Input range scans, reconstructed animation and

the animation transplanted onto a different model.

setting up the markers and registering them with the digital
face model is very cumbersome. Furthermore, transferring
the recorded animations to a different face model is a tedious
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and time consuming task and requires longtime experience
and artistic skills.

We provide a simple solution for capturing and reusing
facial expressions and other soft body animations: Given as
input a sequence of range scans recorded by a low-cost real-
time 3D scanner (e.g. [WLG07], [ZH06]), we reconstruct
an animated mesh which reproduces the recorded anima-
tion. By non-rigidly registering one frame of the obtained
animation to a target triangle mesh, we obtain a dense set of
correspondences between the animation and the target mesh.
These correspondences are further used to adapt and transfer
the entire animation onto the target mesh. To our knowledge,
our processing pipeline is the first fully automatic maker-
less system for animation recording and re-targeting which
is based solely on geometric matching.

The main technical contributions of this paper are:

Animation Reconstruction: We describe a fast and sim-
ple algorithm for computing a coherent animated mesh from
real-time 3D scanner data. Our algorithm employs an energy
minimization approach to fit a template mesh to the input
data and is thereby able to accurately reconstruct the motion
of small-scale features such as wrinkles and lip movement.

Robust Deformable Registration: We present a new
method for robust deformable surface registration based on
energy minimization. Using a reduced deformable model,
our algorithm can non-rigidly align models which are in sig-
nificantly different poses. Unlike previous approaches, our
algorithm is not restricted to any specific input data or class
of deformations.

Animation Transfer: We show that the previously pre-
sented methods for animation reconstruction and non-rigid
model alignment are the key ingredients to animation retar-
geting and derive a simple algorithm for transferring anima-
tions onto different target meshes.

1.1. Related Work

Capturing, analyzing and synthesizing the motion of real-life
objects has long been discussed in the computer vision and
computer graphics communities and a huge body of work
has been published over the last decades. Most of the pro-
posed methods build on marker-based or feature-based mo-
tion tracking in combination with a linear face model. For
a recent overview of these methods, see [ZSCS04, ZH06,
BBA∗07, BLB∗08, MJC∗08] and references therein.

Only recently, marker-less methods for facial motion cap-
turing and expression transfer have been introduced: Wang
and colleagues [WGQ08] combine a feature tracking ap-
proach with least-squares conformal maps to compute dense
inter-frame correspondences for facial animations. Given a
sparse set of user specified correspondences, they compute
dense inter-face correspondences and transfer facial expres-
sions using the method of Noh and Neumann [NN01]. Their

method is very susceptible to the placement of the user de-
fined correspondences and according to our experience, the
expression cloning technique works only well for moderate
deformations (cf. Figure 7). More similar to our method is
the real time system for facial expression transfer by Weise
et al. [WLGP09]: They track facial expressions using a com-
bination of geometric and texture features. Facial expres-
sions are then mapped onto another character using a vari-
ant of the technique proposed by Sumner et al. [SP04]. Due
to the real-time requirements, they are forced to work with
reduced deformation models which cannot reproduce small-
scale detail like wrinkles properly.

Pairwise non-Rigid Registration

Based on the iterative closest points (ICP) algorithm [CM92,
BM92], a number of techniques has been developed which
aim at the non-rigid pairwise alignment of surfaces. These
algorithms mainly differ in the way they compute correspon-
dences and in the deformation model that they are based on.
Li and co-workers [LSP08] formulate the non-rigid regis-
tration as a single non-linear optimization problem which
solves for correspondences and deformation simultaneously.
However, their method is limited to the special case of reg-
istering depth images moreover, it is rather complicated to
implement. Huang et al. [HAWG08] use feature vectors of
a sub-set of the input vertices to compute dense initial cor-
respondences. A set of correspondences which are consis-
tent w.r.t the geodesic distances on the surfaces is then ex-
tracted and used as position constraints to deform the source
using a deformation graph approach [SSP07]. Chang and
Zwicker [CZ08] present a method for the registration of ar-
ticulated shapes where they compute a set of candidate rigid
motions for each vertex. A graph cut algorithm is then used
to compute a consistent deformation field. In a follow-up pa-
per [CZ09], they model the motion of the underlying object
using a volumetric reduced deformable model, yielding a
significant performance boost and more robust registrations.

Animation Reconstruction

Animation reconstruction can be considered as a special case
of non-rigid registration: instead of aligning two surfaces,
the goal of animation reconstruction is to compute a co-
herent deforming model which aligns to all input frames of
an animation. A method for reconstructing a coherent de-
forming mesh model from a sequence of point clouds was
first presented by Shinya [Shi04], where a template mesh
is tracked over time using a gradient descent optimization.
Wand and co-workers [WJH∗07] use a statistical framework
to fit surfel trajectories to the sequence of point clouds. The
huge computation costs of this approach are addressed in a
follow-up publication [WAO∗09], where a new reduced de-
formation model is used. Following Mitra et al. [MFO∗07],
Süßmuth and colleagues [SWG08] compute an implicit four-
dimensional space-time surface from the input data and slide
a template mesh along that surface while enforcing local
rigidity. The time-space setting restricts their method to se-
quences with rather small inter-frame motion. More recently,
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Figure 2: Animation transplantation pipeline: An animated mesh is computed from a set of range scans. One frame of the

animated mesh is then fitted to the target mesh and the animation is deformed accordingly. Finally, the animation is cloned onto

the target mesh.

Li et al. [LAGP09] propose a two step process for animation
reconstruction. First they fit a smooth template mesh to the
input frames using a variant of their previous work [LSP08].
In a second run, high frequency details are recovered by
computing displacement vectors for all template vertices on
a per frame-basis. The displacement vectors are then dif-
fused to neighboring frames, thus resulting in a smooth an-
imation. The disadvantage of this approach is that small
details such as expression wrinkles are only superimposed
rather than tracked.

1.2. Overview

An overview of our processing pipeline is depicted in Fig-
ure 2. Our new algorithm for reconstructing a deformable
model from a sequence of real-time 3D scans is presented
in Section 2. In Section 3, we introduce a simple and ro-
bust method for deformable registration. We then use the
deformable registration to clone animation sequences onto
other triangle meshes (Section 4). We present results in Sec-
tion 5 and conclude our work in Section 6.

2. Animation Reconstruction

Recent advances in 3D scanning technology, e.g. fast
structured light and space-time stereo scanners [WLG07,
ZSCS04], facilitate capturing high quality 3D geometry and
animation simultaneously. The output of real-time 3D scan-
ners is typically a set of densely sampled 3D point clouds
without any correspondence information across frames. In
the first step of our processing pipeline, we establish a
dense set of inter-frame correspondences by computing a
temporal-coherent geometric model from the uncorrelated
input range-scans.

To recover the animation of the scanned object, we suc-
cessively deform an initial template mesh such that it fits
the individual frames of the animation. For all examples in
this paper, we computed the template mesh directly from

the first input frame using standard surface reconstruction
techniques. Marching cubes artifacts are eliminated by uni-
formly re-meshing the template mesh.

Assume, we are given a template mesh M and a set of
sample points P , furtheron called the pose. Both, the mesh
and the point cloud, are discrete approximations of the same
object O which have been recorded at different instants in
time. Our goal is to recover the motion of the object O be-
tween the recording of M and P . Therefor, we try to com-
pute a natural deformation D which transforms the template
mesh M such that it matches the pose described by the point
cloud P . The pose is matched if the distance between the
vertices of M and the points of P is minimized and if the
deformation changes M as little as possible while preserv-
ing small-scale surface detail.

To measure the distance between the mesh and the point
cloud, we use the hierarchical RBF fitting described in
[SMG] to compute a signed distance function fP : R3 → R

for the point cloud. Using this distance function, we can de-
fine the total distance Edist(M,P) between the mesh M and
the point cloud P as

Edist(M,P) =
n

∑
i=1

fP (vi)
2. (1)

We use the as-rigid-as-possible deformation
paradigm [SA07] to measure the magnitude of a de-
formation. Let M be the template mesh and let M̂ be a
deformed instance of M with n vertices vi and v̂i, respec-
tively. Sorkine et al. define a deformation error Edef(M̂,M)
between two meshes as the sum over the individual vertex
errors. The vertex error is thereby defined as the (squared)
deviation of the vertex’s fans deformation between vi and v̂i

from being rigid:

E
vert
def (v̂i,vi) = ∑

v j∈N (vi)

ωi j

∥
∥(v̂i − v̂ j)−Ri(vi − v j)

∥
∥2

2 ,

where Ri is the rigid transformation which aligns the fan
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Figure 3: A single step of our animation reconstruction al-

gorithm: the left and right images show two succeeding in-

put frames. Intermediate registration results after 1,3,5 and

7 iteration steps are shown in between.

of vi best with the fan of v̂i. N (vi) is the 1-neighborhood
of vertex vi and ωi j is the weight of the edge connecting
the vertices vi and v j . Thus, the deformation error for two
meshes is then given as:

Edef(M̂,M) =
n

∑
i=1

E
vert
def (v̂i,vi). (2)

Given an initial template mesh M, a target pose P and a
deformed mesh M̂, we can define a measure for the quality
of a non-rigid registration using the energy terms defined in
Equations (1) and (2):

E(M̂,M,P) = α ·Edist(M̂,P)+Edef(M̂,M) (3)

=
n

∑
i=1

(

α · fP (v̂i)
2 +E

vert
def (v̂i,vi)

)

.

The parameter α can be used as a stiffness parameter to bal-
ance between a tight fitting and a small deformation error.

A suitable deformation which maps the mesh M̂ onto the
point cloud P can now be found by minimizing the registra-
tion error in Equation (4). To solve the resulting non-linear
minimization problem, we use iterative flip-flop optimiza-
tion [SA07, SWG08] which solves for the unknown rigid
transformations Ri first (cf. [SA07]) and uses them to com-
pute improved vertex positions. To find the vertex positions
v̂i which minimize the registration error E for given Ri’s, we
compute the derivative of E w.r.t. v̂i. The derivative of Edef

can be found in [SA07]:

∂Edef

∂v̂i
= ∑

v j∈N (vi)

4ωi j

(

(v̂i − v̂ j)−
Ri +R j

2
(vi − v j)

)

.

To derive Edist for v̂i, we approximate the distance function
fP (x) by a Taylor series of first order which yields

f̂P (v̂i) =
〈

(v̂old
i − v̂i),n

old
i

〉

− f
old
i .

f old
i is the function value and nold

i the normalized gradient at

the current vertex position v̂old
i . Thus Edist becomes

Edist =
n

∑
i=1

(〈

v̂
old
i ,nold

i

〉

− f
old
i

︸ ︷︷ ︸

ci

−
〈

v̂i,n
old
i

〉)2

=
n

∑
i=1

(

ci −
〈

v̂i,n
old
i

〉)2

and the derivative of Edist w.r.t. v̂i is given by

∂Edist

∂v̂i
= −2cin

old
i +2n

old
i (nold

i )T
v̂i. (4)

Setting the partial derivatives ∂E
∂v̂i

= ∂Edef
∂v̂i

+α ∂Edist
∂v̂i

w.r.t. each

v̂i to zero, we arrive at the following (3n × 3n) system of
linear equations:

αn
old
i (nold

i )T
v̂i + ∑

v j∈N (vi)

4ωi j(v̂i − v̂ j)

= (5)

αcin
old
i + ∑

v j∈N (vi)

2ωi j(Ri −R j)(vi − v j).

The system matrix in (5) is sparse and positive definite and
can be efficiently solved using a sparse Cholesky factoriza-
tion [Tol03]. Solving (5) for v̂i yields new vertex positions of
the warped template mesh M̂ which reduce the registration
error in Equation (4). We iterate the computation of the rigid
transformations Ri and the determination of new vertex po-
sitions until the total vertex movement between two iteration
steps falls under a certain threshold. In practice, the iteration
usually terminates after 3-5 steps.

Minimizing the distance between the current mesh and the
point cloud is similar to a non-rigid ICP algorithm which
uses a point to plane matching for correspondence finding.
To improve the robustness of our method, we extend the
previously presented algorithm by pruning correspondences
which are probably bad matches. During the computation of
the Taylor-expansion of the distance function, we compute a
pseudo correspondence vertex v

pc
i = vold

i − f old
i nold

i for each
vertex v̂i. If the distance of v

pc
i to the closest point of the tar-

get point cloud P is larger than three times the average spac-
ing between two neighboring points in P , it is likely that
the pseudo correspondence lies inside a hole and therefor
the correspondence is pruned. We further prune correspon-
dences if the angle between the mesh vertex and the gradient
at v

pc
i is larger then 45 degrees. To prune a correspondence,

it is sufficient to set the gradient nold
i of the respective ver-

tex to zero as this eliminates the influence of the data fitting
term from the linear system in Equation (5). In Figure 3,
we show some intermediate steps of a single template prop-
agation iteration. Vertices for which correspondences have
been pruned due to the distance criterion are shown in blue,
those that have been pruned because of the angle criterion
are shown in red.

Results of the proposed animation reconstruction are
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Figure 4: Reconstructing and transplanting a hand anima-

tion: the first row shows the input scans, the reconstructed

animated mesh is shown in the middle. The bottom row

shows the animation transplanted onto another hand model.

shown in Figures 4 and 9 and in the accompanying video.
Our animation reconstruction technique is very efficient in
terms of memory requirements and computation times. The
memory consumption is low as we only need to keep the
target point cloud of a single time step in memory. The tem-
plate warping step took on average 5.2 seconds per frame
for the hand data set and 12.3 seconds for the face data set.
Experiments have shown that setting stiffness parameter α

in Equation (4) to 1.0 worked best for our examples. A lim-
itation of our template based approach is that we can only
track geometry which is visible in the first frame. However,
this problem could be solved by simply using a static multi-
view reconstruction of the scanned object as initial template
mesh as done in [LAGP09].

3. Robust Deformable Registration

To be able to transfer the reconstructed animation onto an-
other target surface, we need to estimate dense inter-surface
correspondences between the source animation and the tar-
get surface. We compute these correspondences by means
of deformable registration. The algorithm that we used for
warping the template mesh in the animation reconstruction
step involves a non-linear optimization over all vertex posi-
tions. As this procedure is too unstable to align significantly
different shapes, we present a more robust non-rigid regis-
tration technique which uses a reduced deformation model
in this section.

Sumner and co-workers [SSP07] introduce deformation

graphs for representing space deformations. A deformation
graph DG consists of a set of nodes N , which are placed
on a subset of the vertices of the input mesh. Nearby nodes
are connected by edges ei j ∈ E in the graph. With every

Figure 5: Convergence behavior of the non-rigid registra-

tion algorithm. Active correspondences are highlighted blue.

node ni at position pi a local affine transformation Ai(x) =
Mi(x− pi) + pi + ti, which describes how the surrounding
space deforms, is associated. A global deformation at an ar-
bitrary position x is computed by blending the affine trans-
formations of the k nearest nodes n j ∈ Ix of x:

TransDG(x) = ∑
n j∈Ix

ω(n j,x) ·A j(x),

and ω(n j,x) is a positive weight.

The deformation graph allows us to measure the error in-
troduced by a deformation. To preserve small-scale detail of
the surface, it is important that the surface deforms locally
rigid. This is exactly the case if Mi describes a rotation, i.e.
Mi is orthogonal. Thus the deviation of a node ni’s transfor-
mation from being locally rigid can be defined as:

Rot(ni) = 〈q ,r〉2+ 〈r , s〉2 + 〈s ,q〉2

+(〈q ,q〉− 1)2+(〈r ,r〉− 1)2+(〈s , s〉− 1)2,

where q,r and s are the columns of ni’s transformation ma-
trix Mi. As neighboring nodes influence similar regions of
the model, it is important that the computed transforma-
tions are consistent w.r.t. one another. To ensure this con-
sistency, Sumner et al. define an energy function which pun-
ishes derivations between the transformations of two neigh-
boring nodes ni and n j connected by the edge ei j as

Con(ei j) =
∥
∥Ai(pj)−A j(pj)

∥
∥2

2 +
∥
∥A j(pi)−Ai(pi)

∥
∥2

2 .

The energy term Con is defined for each edge and Rot is de-
fined for each node of the deformation graph. By combining
the two, we obtain a global indicator Edef2 for the magnitude
of the deformation induced by a deformation graph:

Edef2(DG) = ωrot ∑
ni∈N

Rot(ni)+ωcon ∑
ei j∈E

Con(ei j).
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Figure 6: Coarse registration and final warp: The resulting

meshes of the respective registration steps are overlayed as

blue meshes on top of the target surface.

In order to utilize deformation graphs for non-rigid regis-
tration, we need to introduce an energy term which pulls the
source mesh M towards the target mesh. By converting the
target mesh into a point cloud P , we are able to reuse the
energy term introduced in Equation (1) with minor modifi-
cations:

Edist2(M,DG,P) = ∑
vi∈M

fP (TransDG(vi))
2.

We use the same tests that were already used in Section 2 to
discard poor correspondences that are either too far apart or
have incompatible normals.

To perform the registration, we compute the unknown
affine transformations of the deformation graph such that the
overall registration error

Ereg2(M,DG,P) = ωdistEdist2(M,DG,P)+Edef2(DG)

is minimized. The minimization of Ereg2 leads to a non-
linear optimization problem which can be solved using
the Gauss-Newton method. In our implementation, we set
ωrot = 1 and ωcon = 10. The fitting weight ωdist is initially
set to 1/128 and then doubled during each step of the Gauss-
Newton algorithm until it reaches an upper bound of 32. This
parameter adjustment, which was also proposed in [LSP08],
can help to avoid local minima as the model deforms al-
most rigidly in the beginning. By increasing ωdist, the fit-
ting energy function becomes more dominant and the model
deforms more elastic. An example registration which illus-
trates the convergence of our iterative non-rigid registration
method is shown in Figure 5 and in the accompanying video.

The proposed non-rigid registration technique computes
a coarse non-rigid alignment but will fail to register small
detail. To improve the small-scale alignment, we use the al-
gorithm from Section 2 to perform a final registration step.
The effect of this final warp is shown in Figure 6. The er-
ror terms Edist and Ereg have been computed according to
Section 2.

4. Animation Transplantation

Given the reconstructed animation and a target object, the
goal of animation transplantation is to transfer the source
animation onto the target mesh. Thereby it is important to
adapt the animation to the characteristics of the target model,
e.g. when transferring the gallop animation of a horse model
onto a dachshund, the steps must be scaled such that they
match the short legs of the dog.

Animation transplantation is realized as a two steps pro-
cedure: In an animation retargeting step, we first adapt the
animation to the target mesh, and then transfer the retargeted
animation to the target mesh to obtain our final animation.

4.1. Animation Retargeting

By deforming a single frame of the animation to match the
target surface using the algorithm for robust deformable reg-
istration presented in Section 3, we obtain a deformed refer-
ence mesh MR which resembles the target geometry while
having the topology of the source animation. Different pro-
portions of the source and the target model are thereby com-
pensated by stretching or squeezing the triangles in the re-
spective regions.

We then apply the animation of the source mesh to the
deformed reference mesh MR by successively transferring
the change in the pose between two frames in the source an-
imation to target mesh. A comparison of various approaches
for deformation transfer is shown in Figure 7: The deforma-
tion exhibited by the source mesh shown in the two leftmost
images is transferred onto the target mesh shown in the third
image. The next image shows the result of naive deformation
transfer where the vertex displacements between two frames
of the animation are directly applied to the target mesh. Noh
and Neumann [NN01] extend the naive approach by scaling
and rotating the displacement vectors according to local sur-
face deformation (fifth image in Figure 7). For all results in
this paper, we used the deformation gradient based approach
of Sumner and Popovic [SP04] which performs best as it pre-
serves local features best. However, as deformation transfer
does only transfer the changes in pose, it does not determine
a global position for the model. We find the global position-
ing for the target mesh by applying the extracted rigid part
of the source deformation to the target mesh.

Figure 7: Various approaches for deformation transfer.



J. Süßmuth and M. Zollhöfer and G. Greiner / Animation Transplantation 7

Figure 8: Transferring a whole body animation onto a sec-

ond character.

4.2. Animation Transfer

Animation retargeting has deformed and adapted the input
animation such that it suits the target mesh (cf. Figure 2). In
this step, we transfer the thereby generated animation onto
the final target model. As the static target mesh MT is usu-
ally more detailed and contains more vertices then the source
animation, we pick a subset of the target models vertices to
drive the animation.

By marking every vertex of the target shape MT which is
the closest point to a vertex of the deformed reference mesh
MR, we obtain a set of vertices VC which are representa-
tive for the vertices of MR. For each of these vertices, we
locate the closest point on a triangle of MR and store the tri-
angle index as well as the barycentric coordinates of the re-
spective point. For each frame of the animation, we displace
the vertices in VC according to the movement of their corre-
sponding points. As both the target shape and the deformed
reference mesh are properly aligned and represent the same
geometry, it is not necessary to adapt the length or the direc-
tion of the displacement vectors. The remaining vertices are
positioned such that the mesh deforms locally rigid and pre-
serves small-scale detail using the optimizations of [SSP07]
and [SA07].

5. Results

We used the proposed framework to reconstruct and trans-
plant various animations which have been acquired using
different devices. Table 1 summarizes the statistics of the
data sets shown in this paper. The first row contains the num-
ber of frames in the animation. The next two rows contain
the total number of points in the input scans and the time it
took to reconstruct the animation where applicable. vertsource

and verttarget are the number of points of the input animated
mesh and the target mesh respectively. The last three rows
contain the computation times for registering the animation
and the target mesh, animation retargeting and transferring
the animations onto the target mesh. All computations were

data set Hand Facea Faceb Handstand

# frames 100 201 384 398
input pts 3.8M 11.3M n/a n/a
tanirec 8.7 min 41 min n/a n/a
# vertsource 11K 15K 74K 25K

# verttarget 53K 90K 50K 10K
treg 2.1 min 2.4 min 4.1 min 2.9 min
tretarget 0.2 min 0.6 min 1 min 1.8 min

ttransplant 6 min 14 min 235 min 45 min

Table 1: Statistics for the data sets shown in this paper.

performed on a 2.93 GHz Core i7 machine with 6 GB of
RAM and the timings are given in minutes.

The hand data set shown in Figure 4 and the facea data set
in Figure 9 were both recorded using an active stereo scan-
ner [WLG07]. We reconstructed an animated mesh from the
captured range scans using the algorithm presented in Sec-
tion 2. The hand animation was transplanted onto a static
hand data set and the face animation was used to animate two
different face scans. The second column of Table 1 contains
data set statistics and timings for transplanting the facial an-
imation onto the face shown in the third row of Figure 9.

The first row of Figure 10 shows a facial animation which
was captured and reconstructed by Li Zhang using the al-
gorithms of [ZSCS04]. Thus, no timings for the animation
reconstruction step are available. The remaining rows show
the results of mapping the animation onto various face scans.

To demostrate the ability of the proposed methods to
transplant more complex animations, we transferred a whole
body animation reconstructed by Gall et al. [GSdA∗09] onto
a second human character (cf. Figure 8 and the accompany-
ing video).

Limitations: We can currently only transfer animations
to models which are in a pose which is included in the an-
imation. If we were to transfer the handstand animation to
a sitting person we would have to bring the person into an
upright position first. When transferring facial animations,
it is crucial that the expressions of the reference animation
frame and the target model are almost identical as can be
seen in Figure 9: The face in the third row reproduces the
recorded expressions very well. However, while still produc-
ing a reasonable animation, the face in the fourth row does
not exactly reflect the emotions of the input sequence as the
expression which was used for registration did not match the
expression of the input data. Similar problems can be ob-
served in Figure 10 and in the video, where a source ani-
mation with open eyes was transplanted onto target meshes
which had their eyes closed.

6. Conclusion and Future Work

We have presented a novel marker-less framework for re-
constructing and reusing facial animations which have been
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Figure 9: Results of our animation reconstruction and transplantation pipeline: The top row shows some input frames from

a sequence of 201 scans, the second row shows the deforming mesh that was computed using our animation reconstruction

method. The last 2 rows show the animation mapped onto two different face data sets.

recorded by real-time 3D scanners. The proposed algorithm
for animation reconstruction produces high quality anima-
tions that include small-scale details like expression wrin-
kles. Transferring the entire geometry of the animation in-
stead of transferring only the motion of several key-points
results in more convincing animations.

One of the main benefits of our method for animation
transplantation is that it requires minimal user interaction as
only a coarse rigid alignment of the source animation and
the target model has to be specified. All our algorithms are
purely based on the recorded geometry and no texture info-
mation is required at any stage of our pipeline. Hence, our
methods are applicable for scanners which produce 3D in-
formation only, e.g. time-of-flight sensors.

In future work, we plan to address the requirement that
the target pose must be contained in the input animation
to achieve convincing results. For whole body animations,
the problem could be solved by using an algorithm for reg-
istering articulated shapes to bring the target model into a
common reference pose. We think that for facial animations,
learning a neutral expression from the input animation and
recording the target meshes in a neutral pose could be a first
step to overcome this restriction.
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