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Abstract

With the release of the Microso Xbox 360 Kinect, an affordable real-time
RGB-D sensor is now available on the mass market. is makes new tech-
niques and algorithms, which have previously been only available to re-
searchers and enthusiasts, accessible for an everyday use by a broad audi-
ence. Applications range from the acquisition of detailed high-quality re-
constructions of everyday objects to tracking the complex motions of peo-
ple. In addition, the captured data can be directly exploited to build virtual
reality applications, i.e. virtual mirrors, and can be used for gesture con-
trol of devices andmotion analysis. To make these applications easy-to-use
in our everyday life, they should be intuitive to control and provide feed-
back at real-time rates. In this dissertation, we present new techniques and
algorithms for building three-dimensional representations of arbitrary ob-
jects using only a single commodity RGB-D sensor, manually editing the
acquired reconstructions and tracking the non-rigid motion of physically
deforming objects at real-time rates. We start by proposing the use of a
statistical prior to obtain high-quality reconstructions of the human head
using only a single low-quality depth frame of a commodity sensor. We ex-
tend this approach and obtain even higher quality reconstructions at real-
time rates by exploiting all information of a contiguous RGB-D stream and
jointly optimizing for shape, albedo and illumination parameters. ere-
aer, we show that a moving sensor can be used to obtain super-resolution
reconstructions of arbitrary objects at sensor rate by fusing all depth obser-
vations. We present strategies that allow us to handle a virtually unlimited
reconstruction volume by exploiting a new sparse scene representation in
combination with an efficient streaming approach. In addition, we present
a handle based deformation paradigm that allows the user to edit the cap-
tured geometry, whichmight consist of millions of polygons, using an inter-
active and intuitive modeling metaphor. Finally, we demonstrate that the
motion of arbitrary non-rigidly deforming physical objects can be tracked
at real-time rates using a custom high-quality RGB-D sensor.

i





Acknowledgements

is dissertation captures the compressed technical contributions and al-
gorithmic achievements of four solid years of work. I started my work in
January 2011 with a strong interest in geometry processing, optimization
problems, rendering and GPGPU programming, but quite clueless about
a suitable field of research. Little did I know that all my rather different
interests would magically line up ... a few years later.

is all would not have been possible without the constant support, friendly
encouragements and selfless contributions of my colleagues and cowork-
ers. My supervisor Günther Greiner always supported me and gave me the
freedom to fully pursue my own research interests. Jochen Süßmuth in-
troduced me to the world of non-rigid registration and supervised me dur-
ing my studies and in the first year of my PhD. Matthias Nießner helped
me to rediscover my will to conduct research and fueled my curiosity in
online 3D reconstruction methods. Marc Stamminger helped during all
deadlines with his advice and craed a lot of amazing illustrations. Frank
Bauer, our Blender guru, shared his tricks and helped with the produc-
tion of videos. I am thankful for all this support and feel in great debt.
What impressed me most is that all of my colleagues managed to endure
my constant rants about the algorithms that break under real world condi-
tions: Christian Siegl, Kai Selgrad, Magdalena Prus, Michael Martinek, Jan
Kretschmer, Quirin Meyer, Roberto Grosso, Matteo Colaianni, Matthias
Innmann, Henry Schäfer, Benjamin Keinert, Franziska Bertelshofer and
Christoph Weber. I feel privileged for the opportunity to work in such a
great and creative environment with people that have become more than
just colleagues to me over the last four years.

I would also like to thank all of my students that worked with me during
their Bachelor and Master projects. Together we learned a lot and got ex-
posed to new interesting topics and ideas. Ezgi Sert helped developing the
presented lattice based deformation approach. Justus ies helped me sub-
stantially with my first DFG project and the presented interactive model

iii



based reconstructionmethod. I amhappy that hewill continuemy research
at the chair.

anks to Shahram Izadi for givingme the opportunity to conduct research
in his group at Microso Research Cambridge. I met a lot of cool peo-
ple during my stay: Andrew Fitzgibbon, Christoph Rhemann, Christopher
Zach, David Kim, Cem Keskin and Sean Fanello. It was a thrilling time full
of hard work, excellent food and great parties.

anks to Matthias Nießner, Matthew Fisher, Chenglei Wu and Christian
eobalt for helping with my real-time non-rigid reconstruction project
and Angela Dai for the nice voice over.

I am also grateful to the German Research Foundation (DFG) for funding
my work over the last four years under grant STA-662/3--1 and GRK-1773.

Last but not least, thanks to my parents Kerstin and Franz for supporting
me on all of my endeavors <3.

October 2014
MZ

iv



Contents

1 Motivation and Fundamentals 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Real-Time RGB-D Sensors . . . . . . . . . . . . . . . . . . 2
1.3 General Purpose GPU Programming . . . . . . . . . . . . 7

2 Optimization Theory 11
2.1 Model Fitting . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Least Squares Optimization . . . . . . . . . . . . . . . . . 13
2.3 Linear Least Squares Optimization . . . . . . . . . . . . . 15
2.4 Non-linear Least Squares Optimization . . . . . . . . . . . 16

3 Contribution and Outline 19

I Reconstruction of Personalized Avatars 23

4 Introduction 25

5 RelatedWork 27

6 Method 29
6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.2 Data Acquisition . . . . . . . . . . . . . . . . . . . . . . . 29

6.2.1 Data Preparation . . . . . . . . . . . . . . . . . . 30
6.2.2 Face and Feature Detection . . . . . . . . . . . . . 31
6.2.3 Face Segmentation . . . . . . . . . . . . . . . . . . 33

6.3 Fitting a Generic Face Model . . . . . . . . . . . . . . . . 33
6.3.1 Fitting Energy Term . . . . . . . . . . . . . . . . . 35
6.3.2 Regularization Energy Term . . . . . . . . . . . . 36
6.3.3 Optimization . . . . . . . . . . . . . . . . . . . . 36
6.3.4 Fitting the morphable face model . . . . . . . . . . 37

v



Contents

7 Results 39

8 Conclusion 41

II Model based Reconstruction of the Human Head 43

9 Introduction 45

10 RelatedWork 47
10.1 Model-free 3D-Reconstruction . . . . . . . . . . . . . . . 47
10.2 Model-based 3D-Reconstruction . . . . . . . . . . . . . . 48

11 Method 51
11.1 Pipeline Overview . . . . . . . . . . . . . . . . . . . . . . 51
11.2 Head Pose Estimation . . . . . . . . . . . . . . . . . . . . 52
11.3 Data Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . 53
11.4 Estimating Model Parameters . . . . . . . . . . . . . . . . 54

11.4.1 Statistical Shape Model . . . . . . . . . . . . . . . 54
11.4.2 Objective Function . . . . . . . . . . . . . . . . . 55
11.4.3 Parameter Initialization . . . . . . . . . . . . . . . 56
11.4.4 Joint Non-Linear GPU Optimizer . . . . . . . . . 57

12 Results 59
12.1 Runtime Evaluation . . . . . . . . . . . . . . . . . . . . . 59
12.2 Reconstruction Quality . . . . . . . . . . . . . . . . . . . 60
12.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . 60

13 Conclusion 65

III Online 3D Reconstruction at Scale 67

14 Introduction 69

15 Related work 71

vi



Contents

16 Method 75
16.1 Algorithm Overview . . . . . . . . . . . . . . . . . . . . . 75
16.2 Data Structure . . . . . . . . . . . . . . . . . . . . . . . . 79

16.2.1 Resolving Collisions . . . . . . . . . . . . . . . . . 80
16.2.2 Hashing operations . . . . . . . . . . . . . . . . . 81

16.3 Voxel Block Allocation . . . . . . . . . . . . . . . . . . . . 83
16.4 Voxel Block Integration . . . . . . . . . . . . . . . . . . . 84
16.5 Surface Extraction . . . . . . . . . . . . . . . . . . . . . . 86
16.6 Streaming . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

16.6.1 GPU-to-Host Streaming . . . . . . . . . . . . . . 89
16.6.2 Host-to-GPU Streaming . . . . . . . . . . . . . . 89
16.6.3 Stream and Allocation Synchronization . . . . . . 90

17 Results 91
17.1 Performance . . . . . . . . . . . . . . . . . . . . . . . . . 92
17.2 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . 95

18 Conclusion 99

IV Interactive Lattice based Deformation 101

19 Introduction 103

20 Previous Work 105

21 Method 107
21.1 Proxy Geometry Generation . . . . . . . . . . . . . . . . . 107
21.2 Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
21.3 Preliminary Results . . . . . . . . . . . . . . . . . . . . . 110
21.4 GPU based Implementation . . . . . . . . . . . . . . . . . 111

22 Results 113

23 Conclusion 115

vii



Contents

V Real-Time Tracking of Deforming Objects 117

24 Introduction 119

25 RelatedWork 121

26 Method 125
26.1 System Overview . . . . . . . . . . . . . . . . . . . . . . . 125
26.2 Lightweight Active Stereo Sensor . . . . . . . . . . . . . . 126
26.3 Surface Tracking as Model Fitting . . . . . . . . . . . . . . 129

26.3.1 Energy Function . . . . . . . . . . . . . . . . . . . 130
26.3.2 Energy Minimization: Gauss-Newton Core Solver 134
26.3.3 Initialization: Correspondence Finding . . . . . . 138
26.3.4 Detail Integration . . . . . . . . . . . . . . . . . . 139

27 Results 141
27.1 Live Non-rigid Capture . . . . . . . . . . . . . . . . . . . 141
27.2 Performance . . . . . . . . . . . . . . . . . . . . . . . . . 142
27.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . 143
27.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 145
27.5 Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . 147
27.6 Other Reconstruction Scenarios . . . . . . . . . . . . . . . 147

28 Limitations 151

29 Conclusions 155

30 Summary and Outlook 157

Bibliography 159

viii



List of Figures

1.1 e Microso Xbox 360 Kinect sensor . . . . . . . . . . . 3
1.2 Data captured by RGB-D sensors . . . . . . . . . . . . . . 4
1.3 Accuracy of captured 3D geometry . . . . . . . . . . . . . 5
1.4 e Pinhole Camera and its projective geometry . . . . . . 6
1.5 Structure of a Symmetric Multiprocessor (SM) . . . . . . . 8

2.1 Principle of a functional system S . . . . . . . . . . . . . . 11

6.1 Overview of the avatar reconstruction approach . . . . . . 30
6.2 Data preprocessing . . . . . . . . . . . . . . . . . . . . . . 31
6.3 Facial feature detection . . . . . . . . . . . . . . . . . . . . 32
6.4 Fitting a generic face model . . . . . . . . . . . . . . . . . 34

7.1 Comparison with ground truth data . . . . . . . . . . . . . 39
7.2 Transferring an animation onto a captured avatar . . . . . 40
7.3 Face reconstruction results for four individuals . . . . . . . 40

9.1 Hardware setup . . . . . . . . . . . . . . . . . . . . . . . . 45

10.1 Model-free vs. model-based reconstruction . . . . . . . . 48
10.2 Noise removal . . . . . . . . . . . . . . . . . . . . . . . . 48

11.1 Per frame pipeline . . . . . . . . . . . . . . . . . . . . . . 51
11.2 Initial alignment . . . . . . . . . . . . . . . . . . . . . . . 52

12.1 Per frame runtime . . . . . . . . . . . . . . . . . . . . . . 59
12.2 Ground truth comparison . . . . . . . . . . . . . . . . . . 61
12.3 Comparison to the method presented in Part I . . . . . . . 61
12.4 Animation re-targeting . . . . . . . . . . . . . . . . . . . . 62
12.5 Virtual reality applications . . . . . . . . . . . . . . . . . . 62
12.6 3D-Reconstruction results . . . . . . . . . . . . . . . . . . 63

16.1 Pipeline overview . . . . . . . . . . . . . . . . . . . . . . . 78

ix



List of Figures

16.2 Voxel hashing data structure . . . . . . . . . . . . . . . . . 80
16.3 Hashing operations . . . . . . . . . . . . . . . . . . . . . . 82
16.4 Voxel block selection . . . . . . . . . . . . . . . . . . . . . 85
16.5 Data streaming . . . . . . . . . . . . . . . . . . . . . . . . 88

17.1 Example output from our reconstruction system . . . . . . 91
17.2 Performance comparison . . . . . . . . . . . . . . . . . . 92
17.3 Quality and scale comparison with related systems . . . . . 93
17.4 Comparison of camera tracking dri . . . . . . . . . . . . 95
17.5 Comparison with the offline method of [ZK13] . . . . . . 96
17.6 Reconstructions of the captured test scene . . . . . . . . . 98

19.1 e proposed lattice based deformation approach . . . . . 103

21.1 Grid generation . . . . . . . . . . . . . . . . . . . . . . . . 107
21.2 Volume aware deformations . . . . . . . . . . . . . . . . . 109
21.3 Comparison between tri-linear and B-Spline interpolation 111

22.1 Generated example poses . . . . . . . . . . . . . . . . . . 113

26.1 Main system pipeline . . . . . . . . . . . . . . . . . . . . . 125
26.2 Our active stereo sensor . . . . . . . . . . . . . . . . . . . 129
26.3 Robust kernel . . . . . . . . . . . . . . . . . . . . . . . . . 132
26.4 Block structure of the Jacobian . . . . . . . . . . . . . . . 136

27.1 Our live setup . . . . . . . . . . . . . . . . . . . . . . . . . 141
27.2 Applications for live non-rigid capture . . . . . . . . . . . 144
27.3 Convergence of the solver . . . . . . . . . . . . . . . . . . 144
27.4 Energy of the ARAP regularizer . . . . . . . . . . . . . . . 145
27.5 A number of different deformable objects . . . . . . . . . . 146
27.6 Ground truth comparison . . . . . . . . . . . . . . . . . . 146
27.7 Comparison to [LAGP09] . . . . . . . . . . . . . . . . . . 148
27.8 Reconstructions of synthetic multi-view input . . . . . . . 148

28.1 Limitations of the presented approach . . . . . . . . . . . 151

x



List of Tables

21.1 Timings of the CPU implementation . . . . . . . . . . . . 112
21.2 Timings of the GPU implementation . . . . . . . . . . . . 112

27.1 Used settings and parameters . . . . . . . . . . . . . . . . 143
27.2 Timings for different deformable objects . . . . . . . . . . 143

xi





CHAPTER 1

Motivation and Fundamentals

1.1 Motivation

With the release of the Microso Xbox 360 Kinect, an affordable real-time
RGB-D sensor is now available on the mass market. is makes new tech-
niques and algorithms, which have previously been only available to re-
searchers and enthusiasts, accessible for an everyday use by a broad audi-
ence. Such techniques range from the acquisition of detailed high-quality
reconstructions of everyday objects to tracking the complex articulatedmo-
tion of people.

Real-time RGB-D sensors provide a contiguous stream of color and depth
data at 30Hz leading to approximately  million unique sample points per
second. Processing such a huge amount of data at real-time rates requires
fast and efficient implementations of the used data structures and underly-
ing algorithms. Real-time speed allows to fully leverage the temporal coher-
ence in the captured data stream, while still providing interactive feedback
to the user. is allows the user to directly intervene and positively influ-
ence the output of the algorithm adding transparency and increasing the
usability of the application. For example, while digitizing an object, the
user can directly see the current state of the reconstruction and adapt his
scanning pattern to better sample the object's geometry and remove holes.

Nowadays, such commodity RGB-D sensors enable basically everybody to
create their own custom three-dimensional content, digitally share the cap-
tured datasets with friends and physically replicate the digitized objects us-
ing 3D printers. e captured content can be a three-dimensional model of
an object's appearance and shape as well as a complete animation sequence
that captures the object's time-varying behavior in a compact form. In addi-
tion, the broad availability of captured three-dimensional reconstructions
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CHAPTER 1 Motivation and Fundamentals

increases the demand for interactive and intuitive deformation approaches
that enable users to easily create new variations of the captured geometry.
Together these techniques have the potential to redefine the way we think
about the creation and manipulation of virtual content.

e captured high-quality three-dimensional models are the basis for tak-
ing virtual measurements of our body's anatomy. In the future, this will
allow for the design and fabrication of perfectly fitting cloth. Using a vir-
tual mirror, customers will be able to use their virtual double to digitally
try-on different types of cloth comfortably from home without having to
go to a store. Such an application will enable them to inspect their look
from a variety of different virtual viewpoints and under different simulated
illumination conditions.

Capturing and tracking the motion of humans in real-time makes it possi-
ble to intuitively control arbitrary devices through simple gestures. In ad-
dition, the tracked motion can be transfered to captured and handcraed
digital models using re-targeting algorithms. Such a live virtual puppetry
system will allow users to breath life into virtual characters in video games
and can be used for the production of movies. Leveraging such techniques
for teleconferencing will create completely new interaction and communi-
cation experiences between people.

1.2 Real-Time RGB-D Sensors

Real-time RGB-D sensors capture a contiguous stream of color and depth
data at 30Hz. is enables these devices to sense the appearance as well
as the geometry of objects in their field of view. In the following, we il-
lustrate the functionality of such devices at the example of the Microso
Xbox 360 Kinect sensor. is device was initially released as a video game
controller for the Microso Xbox. Meanwhile, official drivers have been
released which enable the general purpose use of the device on a regular
personal computer. Besides this sensor, which was the first one available on
themassmarket, several other similar devices like the PrimeSense Carmine,

2



1.2 Real-Time RGB-D Sensors

Asus Xtion Pro and the Kinect 4 Windows exist. All of these devices build
on the same basic principle to capture depth information, but have slightly
different specifications. Most notably is the PrimeSenseCarmine 1.09 Short
Range sensor that allows to capture depth at a slightly shorter minimum
range. We will exploit this property later on for the reconstruction of the
shape and appearance of human heads.

Figure 1.1: TheMicrosoft Xbox 360 Kinect: An IR projector (1) projects an unique
dot pattern into the scene, which is recaptured by an IR camera (3). Depth is esti-
mated based on the local shift between the projected and the captured pattern.
The device simultaneously captures color information using an RGB camera (2).

eMicrosoXbox 360Kinect combines a regularRGBcamera and a depth
sensor, consisting of an infrared (IR) projector and an IR camera as shown
in Figure 1.1. e IR projector emits an unique dot pattern into the scene
which is reflected by objects and directly recaptured (c.p. Figure 1.2 (b)) by
the IR camera. e local shi between the emitted and the captured pat-
tern is used to estimate depth. e output is a ×  depth image (c.p.
Figure 1.2 (c)) approximately every .ms.

Since the Kinect actively illuminates the scene in the IR spectrum to gener-
ate artifical features, it belongs to the category of active sensing techniques.
Compared to passive sensing techniques, i.e. passive stereo, the density of
the reconstruction does not depend on the amount of texture features that is
naturally available in the scene. e Kinect can sense depth approximately
in a range between . and  meters. e accuracy of the captured depth
values is heavily influenced by the actual distance to the sensed objects and
degrades with increasing distance. erefore, in most of the presented algo-
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CHAPTER 1 Motivation and Fundamentals

rithms, we only take depth values which are smaller than four meters into
account. Projecting and capturing the dot pattern in the IR domain has

(a) RGB Image (b) IR Image (closeup) (c) Depth Image

Figure 1.2: RGB-D sensors allow to simultaneously sense depth and color infor-
mation: A color (a) and depth (c) image of a contiguous (30Hz) stream of a Mi-
crosoft Xbox 360 Kinect. Depth is color coded from close (blue) to far (red). A
closeup of the captured IR image is shown in (b).

the advantage of not interfering with the simultaneous capture of a corre-
sponding RGB image. e additionally captured color data can for example
be used to texture the captured geometry. e RBG image (c.p. Figure 1.2
(a)) is provided in the same resolution and frame rate as the depth data.
However, the two signals are not naturally aligned due to the different ex-
trinsic positions and orientations of the two sensors. If a mapping between
the two signals is required, we have to warp one of them to the coordinate
system of the other sensor. e required extrinsic and intrinsic camera pa-
rameters can for example be obtained by an off-the-shelf stereo calibration
routine [Bra00].

Since depth estimation is based on observing the projected dot pattern,
depth can not be recovered if the pattern is partially occluded from the IR
camera's point of view. Additional disadvantages of the used technique are
data dropouts if the pattern is absorbed (dark objects), reflected (highly
specular objects) or transmitted (transparent objects). Problems also arise
in bright direct sunlight, since the sun's emitted IR radiation over-saturates
the IR camera and makes the pattern imperceptible.

Compared to high-quality structured light 3D scanners, each single cap-
tured depth image of the Kinect is of comparably low quality. Figure 1.3
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1.2 Real-Time RGB-D Sensors

(a) Raw Depth Map (b) Closeup

Figure 1.3: The three-dimensional geometry (a) captured by commodity RGB-D
sensors contains a lot of noise and holes. The data is highly discretized (b) and
the accuracy degrades with increasing distance to the camera.

shows a phong shaded rawdepthmap captured by aKinect sensor. Most no-
tably are the data dropouts at the display and the strong staircase discretiza-
tion artifacts on the background wall. e advantage of the Kinect sensor
is that depth images can be captured at 30Hz. is allows to exploit the
spatio-temporal coherence in the input stream to obtain super-resolution
reconstructions at real-time rates. Later on, we will also exploit statistical
priors to further increase the reconstruction quality.

An imaging sensor, c.p. Figure 1.4, can be completely described by its ex-
trinsic and intrinsic parameters. e extrinsic parameters describe the sen-
sor's spatial location o and its orientation. An orthogonal coordinate sys-
tem given by three vectors x, y and z can be used to specify the orientation.
Here, we assume the z-axis to be the optical axis of the sensor and the x- and
y-axis to point to the le and upward, respectively. e intrinsic parameters
are given by the sensor's projective geometry. It describes the mapping of
the 3Dworld to the 2D image plane (blue) of the sensor, see Figure 1.4 (le).
Using the assumption of a Pinhole Camera, the sensor's projective geome-
try can be specified by its focal length f and the principal point c = (cx, cy)T.
Geometrically, c is the intersection point between the optical axis and the
imaging plane. In the following, the coordinate system of the image is as-
sumed to be spanned by the vectors xc and yc.

5
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Figure 1.4: The Pinhole Camera and its projective geometry: A 3D point p is pro-
jected to the position ũ = (ũx, ũy)T on the 2D image plane using perspective
projection. The intrinsic properties of the camera are given by its focal length f
and the principal point c = (cx, cy)T.

Let us first assume that the principal point is the origin c = (, )T of the
image coordinate system. en, the projection ũ = (ũx, ũy)T on the 2D im-
age plane of a 3D point p = (px, py, pz)T can be associated with the sensor's
intrinsic parameters using equal triangles, see Figure 1.4 (right):

ũx
f
=

px
pz
,
ũy
f
=

py
pz
.

Hence, the 2D projection on the image plane ũ can be computed as:

ũx =
f · px
pz

, ũy =
f · py
pz

.

If the origin of the image coordinate system does not coincide with the prin-
cipal point, the coordinates of the 2D projection have to be shied accord-
ingly:

u = ũ+ c

In homogeneous screen space coordinates û, we can directly express these

6



1.3 General Purpose GPU Programming

two equations using linear algebra:

û = Kp, K =

fx s cx
 fy cy
  

 .

K is called the intrinsic camera matrix and models the sensor's intrinsic
imaging properties. s is an additional skew parameter that was implicitly
set to zero before and can be assumed to be zero for most sensor systems.
e intrinsic camera matrix is constant as long as the optical properties of
the sensor remain fixed (i.e. the focal length) and can be obtained using
off-the-shelf camera calibration routines [Bra00].

To recover the three-dimensional geometry given a depth map, we have to
invert the image formation process and back-project the captured depth
values to camera space. is requires K− which associates a depth map
pixel u = (ux, uy) at depth d with its corresponding 3D position p:

p = K−

ux
uy
d

 .

e presented Pinhole Cameramodel is a strong simplification of the com-
plex real world optical properties of sensors. To obtain high quality recon-
structions, we have to explicitly model and account for lens distortion ef-
fects in the image formation process.

1.3 General Purpose GPU Programming

Mainly driven by the increasingly high computational demands of video
games over the last decade, Graphics ProcessingUnits (GPUs) have steadily
doubled their highly parallel compute power. Nowadays, GPUs easily out-
perform modern day CPUs in terms of the achieved number of floating
point operations (FLOPs) per second. Additionally, GPUs have evolved
from a special purpose architecture for the fast and efficient generation of
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Figure 1.5: Symmetric Multiprocessor (SM): Each SM consists of a set of arith-
metic units that execute operations and control logic that allows to schedule
the next SIMD operation on multiple cores simultaneously.

synthetic imagery to a highly programmable and flexible compute platform
that can be readily used for general purpose programming (GPGPU) tasks.
is trend has been started by the CUDA [NVI10] programming architec-
ture. e faster increase in terms of FLOPs compared to CPUs can be ex-
plained by the GPU's more compute centric hardware architecture. Follow-
ing the Single Instruction Multiple Data (SIMD) paradigm, all cores in a
warp (CUDA terminology for a collection of 32 cores) of a GPU simultane-
ously execute the same instruction code on a potentially per core varying set
of inputs. is allows all threads executed by the warp to share the control
unit that manages the program flow, freeing up more space on the waver
for arithmetic processing units. e disadvantage of this paradigm is that
operations within a warp have to be sequentialized if the control flow di-
verges. In this case, the GPU's potentially available peak performance can
not be reached. In addition, instead of exploiting clever cache hierarchies
to reduce memory latency, GPUs try to hide latency by scheduling between
different warps. By getting rid of most parts of the cache hierarchy, addi-
tional space on the waver can be allocated to arithmetic units.
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1.3 General Purpose GPU Programming

In this work, we will exploit the highly parallel compute power of modern
GPUs to efficiently solve the presented reconstruction, deformation and in-
verse rendering problems. is will enable us to solve these challenging
problems at a previously unmatched speed and accuracy. Since the GPU's
hardware architecture significantly differs from the CPU's, smart new algo-
rithms and techniques are required that are specifically tailored to the un-
derlying hardware platform. In the following, we will give a short overview
of the key architectural features of this compute platform.

Amodern day GPU, i.e. the Nvidia Geforce GTXTitan, consists of multiple
SymmetricMultiprocessors (SMs). Each SM consists ofmultiple arithmetic
units and control logic for scheduling the execution of the next SIMD in-
struction, see Figure 1.5. In addition, each executed thread has access to
three types of memory. ese memory types have different specifications
and heavily vary in size and response time. To reach the peak performance
of the device, it is essential that algorithms are designed such that they ex-
ploit fast memory as best as possible.

Global Memory: e global device memory is the largest of the three
memory types. It can hold multiple Gigabyte of data and can be accessed
by all SMs. Compared to the other memory types, read and write access
is time consuming and requires hundreds of clock cycles. is bottleneck
is slightly remedied by a small data cache that has a size of approximately
kB on current GPUs. Nevertheless, data access is expansive and will have
a huge impact on the performance of the implemented algorithms. Due to
its global nature, this memory region is ideal for inter SM communication.

SharedMemory: enext smallermemory type is the sharedmemory, it
has a default size of kB per SM onmodern GPUs. It can only be accessed
by warps executed on the associated SM. Since this memory is close to the
corresponding SM,memory accesses are an order of magnitude faster (tens
of cycles) compared to global memory accesses. Due to its local nature, it
is ideal for intra SM communication.

9
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Registers: ememory closest to the SMs and therefore the fasted to ac-
cess are the registers. Besides begin automatically assigned by the compiler
to hold frequently used data, data can also be manually assigned. Each SM
on a modern GPU has access to a few thousand registers that have to be
shared between all running threads. e access time is in the order of a few
compute cycles.

Each SM can hold and run more warps than the actual number of phys-
ical cores would permit to execute simultaneously. A time-multiplexing
strategy is used to hide latencies in memory access by executing a different
warp, if a currently running warp has to wait for accessed data elements.
e amount of warps a SM can hold concurrently is directly limited by its
physical resources. is means that sufficient shared memory and registers
have to be available to hold the accumulated state of all the warps.

An additional key factor influencing the performance of GPU programs is
the number of issued kernel calls. Each kernel call introduces an implicit
synchronization point to the program limiting its parallelism. In addition,
kernel calls are not for free, since initializing and launching the threads gen-
erates overhead. To avoid this, the algorithm has to be best broken down
into a minimal number of kernel invocations. Finding such a smart de-
composition of an algorithm requires in-depth knowledge of the problem
domain.
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CHAPTER 2

Optimization Theory

2.1 Model Fitting

Let us consider a real world system S that transforms an input vector s ∈
Rd to a corresponding output vector t ∈ Rd , see Figure 2.1. e mapping
t = g(s) is implemented by an unknown internal function g : Rd → Rd .
To capture the behavior of S , we have to discover its hidden internal func-

Figure 2.1: A real world system S maps an input s to a corresponding output
t = g(s) based on a hidden unknown function g.

tion and build a digital model. Such a digital modelM is an abstract entity
that tries to explain the functional behavior of S as good as possible based
on a different, potentially simpler, function f.

For example, the model used for the weather forecast, tries to predict to-
morrow's weather conditions based on a sparse history of measurements.
We will exploit such models to predict the appearance and shape of human
heads based on a discrete set of color and depth observations by an RGB-
D sensor. In addition, we will infer the spatial position and orientation
of a moving sensor and track the non-rigid deformations of physically de-
forming objects based on the captured color and depth constraints. e
presented handle based direct manipulation approach infers the pose of a
model based on a sparse set of user constraints.

Due to the high complexity and intertwined dependencies of gwith respect
to its parameters, we have to introduce some simplifications to keep the

11
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model f computationally feasible. ese simplifications lead to a disagree-
ment between the predictions and the actual responses of the real system
g(s) ̸= f(s). Ideally, we want to find a model that minimizes this discrep-
ancy.

Having observed N outputs ti = g(si) of S for corresponding inputs si, the
goal ofmodel fitting is to find the function f that best explains these observa-
tions. In general, a possibly infinite number of functions exist that all satisfy
the gathered observations. To make the problem computationally tractable
and allow for a unique solution, we have to restrict our search to a suitable
subspace that limits the number of degrees of freedom (DoFs). Neverthe-
less, the used model has to be expressive enough to allow for a good fit of
the data and should be fast to evaluate. For simple regression problems,
the used subspace might for example be the space of polynomials of degree
two. Besides directly reducing the model's DoFs, we can additionally in-
corporate prior information, i.e. smoothness assumptions to add further
restrictions.

Let fx be a functionwith n degrees of freedom x =
(
x, . . . , xn−

)T, then the
quality of the fit directly depends on these unknownmodel parameters. To
objectively quantify the quality of a fit, we introduce the following objective
function that measures whether the model can reproduce the observations
(Efit) and fulfills the assumed priors (Eprior):

Etotal(x) = Efit(x) + λEprior(x).

e parameter λ allows to balance between a tight fit of the observations
and the importance of the prior constraints. e value of λ has a drastic
influence on the generalization properties of the model and can be used
to prevent over-fitting the input data. A suitable value can be empirically
determined based on the usedmodel and the expected signal-to-noise ratio
or can be statistically learned using cross validation strategies.

Efit can for example be modeled as the squared difference between the com-
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puted predictions and the corresponding observations:

Efit(x) =



N−∑
i=

||fx(si)− ti||.

If a perfect model fx with respect to the defined objective function and the
given training data exists, its parameters x would fulfill Etotal(x) = . Of-
ten, it is neither possible nor desirable to reduce the error to zero, since the
number of free variables has to be much smaller than the number of inde-
pendent constraints. is prevents overfitting and allows for good general-
ization properties of themodel. In this case, we want to find the parameters
x∗ such that Etotal is minimized:

x∗ = argmin
x

Etotal(x).

is is a general unconstrained optimization problem in the unknownmodel
parameters x. In the following, we will focus on a special class of such opti-
mization problems that allows for efficient solution strategies.

2.2 Least Squares Optimization

If the optimization objective Etotal : Rn → R can be expressed as a sum of
m squared residual terms ri

Etotal(x) =



m−∑
i=

ri(x),

minimizingEtotal with respect to its n unknown parameters x is called a least
squares problem. Note, that our formulation of Efit in the previous section
fulfills this requirement. In the following, we will assume that the optimiza-
tion problem at hand is over-constrained. is means that the number of
unknowns n of our model is smaller than the number of independent con-
straints. Due to its special form, such optimization problems can be tackled
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more efficiently than general energy minimization problems. To see why
this is the case, we have to reformulate the associated optimization prob-
lem

x∗ = argmin
x




m−∑
i=

ri(x),

in terms of its corresponding residual vector field F : Rn → Rm by stacking
all residuals in anm-dimensional vector:

F(x) =
(
r(x), . . . , rm−(x)

)T
.

Using this definition, the minimization problem can be reformulated in
terms of the vector field F:

x∗ = argmin
x



||F(x)||.

As we know from variational calculus, the minimizer x∗ of Etotal has a van-
ishing gradient:

∇Etotal(x∗) = .

Using the Chain Rule, the gradient of Etotal can be expressed in terms of the
residual vector field F and its Jacobian J:

∇Etotal(x) = J(x)TF(x).

e Jacobian is the (m× n)-matrix of the first partial derivatives of F:

J(x) =


δr
δx , . . . ,

δr
δxn−

...
. . .

...
δrm−
δx , . . . , δrm−

δxn−

 .

If the residual functions are linear in the unknowns, we speak of a linear
least squares problem, otherwise the optimization problem is called a non-
linear least squares problem. In the following, we will discuss robust solu-
tion strategies for these two special cases and show how they can be solved
efficiently.
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2.3 Linear Least Squares Optimization

If the optimization objective is a quadratic function, which means that the
actual model is linear in the unknown parameters x, the optimization prob-
lem is called a linear least squares problem. In this special case, all residual
functions ri(x) are linear and the residual vector field F can be expressed as:

F(x) = Ax+ b.

e (m×n)-matrixA gathers all linear coefficients and has one row for each
residual and one column for each unknown. e vector b contains the con-
stant components of the residuals. erefore, the associated minimization
problem can be stated in the following canonical form:

x∗ = argmin
x

||Ax+ b||.

e Jacobian of the vector field F(x) is its first derivative:

J(x) = δF
δx

= A.

In this special case, the minimizer x∗ of the energy function can be com-
puted as:

∇Etotal(x∗) = AT(Ax∗ + b) = .

e resulting system of linear equations are the well known normal equa-
tions:

ATAx∗ = −ATb.

e systemmatrix ATA is symmetric and the system allows for the compu-
tation of a unique solution. Since the objective is convex and always pos-
itive, we can see that the solution of this linear system is also the global
minimizer of Etotal. e symmetry of the systemmatrix can be exploited to
increase the space and time efficiency of the solution strategy. e linear
system can be solved with standard factorization based methods or itera-
tive solution techniques. While factorization techniques allow for a direct
solution of the system, they are computationally expensive and hard to par-
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allelize. In contrast, iterative techniques allow for a better parallelization,
but require a good initial estimate to warm start the optimizer. Later on, we
will exploit direct solution techniques on the CPU for small dense systems
as well as a fast GPU based iterative Preconditioned Conjugate Gradient
(PCG) solver to compute x∗ for large sparse systems at real-time rates.

2.4 Non-linear Least Squares Optimization

If the residual vector field is non-linear in its parameters, finding optimal
values x∗ that minimize Etotal is called a non-linear least squares problem:

x∗ = argmin
x



||F(x)||.

In this case, we can compute an optimal solution using for example the
Gauss-Newton method. e key idea of this approach is to explicitly lin-
earize the vector field F around an estimate x(k) of the solution using Taylor
Expansion:

F(x(k) + δ) ≈ F(x(k)) + J(x(k))δ, δ = x(k+) − x(k).

is linear approximation of themulti-variate residual vector field gives rise
to a linear least squares problem in the unknown optimal updates δ∗:

δ∗ = argmin
δ

||F(x(k)) + J(x(k))δ||.

is problems can be efficiently and robustly solved as described in Section
2.3. Given a suitable starting value x(), the minimizer of the non-linear
optimization problem can be iteratively computed by solving a series of E
linearized subproblems for the unknowns {x(k)}Ek=. e starting value x()
has an enormous impact on the convergence of the method and the found
optimum. Since the Gauss Newtonmethod is locally convergent, it can not
be guaranteed that the globally best solution is found. erefore, smart
strategies for initializing close to the global optimum are required. We will
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see such strategies, specifically tailored to the problem at hand, later on.
Note, that the system matrix is changing in each Gauss Newton iteration
step, since the system is linearized around the last estimate. is makes
it challenging to run this method at real-time rates using direct solution
techniques, since a factorization of the system matrix can not readily be
reused inmultiple iteration steps. Later on, wewill present a fast GPUbased
Gauss-Newton solver that builds on an iterative solution strategy and can
compute the optimum at real-time rates.
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CHAPTER 3

Contribution and Outline

In this dissertation, we first present an algorithms that can reconstruct the
geometry of a human face based on a single RGB-D image. Aer that, we
extend this approach and obtain even higher quality reconstructions of the
geometry and appearance of human heads based on a contiguous RGB-D
stream. Next, we present an approach to digitize complete large scale en-
vironments in real-time using a moving consumer-grade RGB-D sensor.
e acquired three-dimensional models, which can consist of millions of
polygons, can be interactively and intuitively manipulated using the handle
based deformation metaphor that is presented next. Finally, we present a
real-timemethod that allows to track the non-rigidmotion of physically de-
forming objects using only a single customRGB-D sensor. In the following,
we give a more detailed overview of the five presented techniques.

Part 1: Reconstruction of Personalized Avatars

We present a simple algorithm for computing a
high quality personalized avatar from a single
color image and the corresponding depth map
which have been captured by Microso's Kinect
sensor. Due to the low market price of our hard-
ware setup, 3D face scanning becomes feasible
for home use. e proposed algorithm combines
the advantages of robust non-rigid registration and fitting of a morphable
face model. We obtain a high quality reconstruction of the facial geometry
and texture along with one-to-one correspondences with our generic face
model. is representation allows for a wide range of further applications
such as facial animation andmanipulation. Our algorithm has proven to be
very robust. Since it does not require any user interaction, even non-expert
users can easily create their own personalized avatars.
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Part 2: Interactive Reconstruction of the Human Head

We present a novel method for the interactive
markerless reconstruction of human heads us-
ing a single commodity RGB-D sensor. Our en-
tire reconstruction pipeline is implemented on
the GPU and allows to obtain high-quality re-
constructions of the human head using an in-
teractive and intuitive reconstruction paradigm.
e core of our method is a fast GPU-based non-
linear Quasi-Newton solver that allows us to leverage all information of the
RGB-D stream and fit a statistical head model to the observations at inter-
active frame rates. By jointly solving for shape, albedo and illumination
parameters, we are able to reconstruct high-quality models including illu-
mination corrected textures. All obtained reconstructions have a common
topology and can be directly used as assets for games, films and various
virtual reality applications. We show motion re-targeting, re-texturing and
re-lighting examples. e accuracy of the presented algorithm is evaluated
by a comparison against ground truth data.

Part 3: Online 3D Reconstruction at Scale

Online 3D reconstruction is gaining newfound
interest due to the availability of real-time con-
sumer depth cameras. e basic problem takes
live overlapping depth maps as input and incre-
mentally fuses these into a single 3Dmodel. is
is challenging particularly when real-time per-
formance is desired without trading quality or
scale. We contribute an online system for large
and fine scale volumetric reconstruction based on amemory and speed effi-
cient data structure. Our system uses a simple spatial hashing scheme that
compresses space, and allows for real-time access and updates of implicit
surface data, without the need for a regular or hierarchical grid data struc-
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ture. Surface data is only stored densely where measurements are observed.
Additionally, data can be streamed efficiently in or out of the hash table,
allowing for further scalability during sensor motion. We show interactive
reconstructions of a variety of scenes, reconstructing both fine-grained de-
tails and large scale environments. We illustrate how all parts of our pipeline
from depth map pre-processing, camera pose estimation, depth map fu-
sion, and surface rendering are performed at real-time rates on commodity
graphics hardware. We conclude with a comparison to current state-of-the-
art online systems, illustrating improved performance and reconstruction
quality.

Part 4: Interactive Lattice based Deformation

We present a novel lattice based direct manip-
ulation paradigm (LARAP) for mesh editing
that decouples the runtime complexity from the
mesh's geometric complexity. Since our non-
linear optimization is based on the as-rigid-as-
possible (ARAP) paradigm, it is very fast and
can be easily implemented. Our proxy geome-
try automatically introduces volume-awareness into the optimization 
prob-lem, leading to more natural deformations. Since we compute 
how the space surrounding an object has to be deformed to satisfy a 
set of user-constraints, we can even handle models with disconnected 
parts. We an-alyze the bottlenecks of the presented approach and propose 
a data-parallel multi-resolution implementation on the GPU, which 
allows to pose even high-quality meshes consisting of millions of triangles 
in real-time.
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We present a combined hardware and soware 
solution for markerless reconstruction of non-
rigidly deforming physical objects with arbitrary 
shape in real-time. Our system uses a single self-
contained stereo camera unit built from off-the-
shelf components and consumer graphics hard-
ware to generate spatio-temporally coherent 3D
models at 30Hz. Anew stereomatching algorithm estimates real-timeRGB-
Ddata. We start by scanning a smooth templatemodel of the subject as they
move rigidly. is geometric surface prior avoids strong scene assumptions,
such as a kinematic human skeleton or a parametric shape model. Next,
a novel GPU pipeline performs non-rigid registration of live RGB-D data
to the smooth template using an extended non-linear as-rigid-as-possible
(ARAP) framework. High-frequency details are fused onto the final mesh
using a linear deformation model. e system is an order of magnitude
faster than state-of-the-art methods, whilematching the quality and robust-
ness of many offline algorithms. We show precise real-time reconstructions
of diverse scenes, including: large deformations of users' heads, hands, and
upper bodies; fine-scale wrinkles and folds of skin and clothing; and non-
rigid interactions performed by users on flexible objects such as toys. We
demonstrate how acquired models can be used for many interactive scenar-
ios, including re-texturing, online performance capture and preview, and
real-time shape and motion re-targeting.
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CHAPTER 4

Introduction

During the past few years, massive multiplayer online games (MMOGs)
such as World of Warcra, Aion or Second Life have gained tremendous
attention. In these games, millions of users, each represented by a virtual
character -- known as avatar -- meet in a three-dimensional virtual world.
Since the users should be distinguishable from each other, each user must
have a unique avatar. Most MMOGs offer a character editor in which the
user can select his avatar from a set of existing models. ese avatars can
be further customized using simple user interfaces which allow the user
to morph between different shapes or to include customized textures or
models. As the graphics in computer games become ever more realistic
and the focus of the games changes from fantasy scenarios towards real life
settings, the demand for photo-realistic avatars, which resemble the users
themselves, is constantly increasing. Unfortunately, current in-game avatar
editors offer only a limited expressibility, making it almost impossible for a
user to create a virtual clone for the online world. Besides their usage in on-
line games and chats, personalized 3D avatars are also important in gadget
applications such as aging simulations or digital 3D beauty salons.

We present a fully automatic method for the generation of realistic three-
dimensional face models with textures. As input for our algorithmwe use a
depth scan and a color image that were recorded using theMicrosoKinect
sensor. Due to the low market price and its widespread use, the Microso
Kinect sensor is ideally suited for recording personalized 3D avatars. Using
our system, everyone can automatically digitize his face and create a virtual
clone within seconds.
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e reconstruction of personalized 3D face models has become very pop-
ular during the last years. Two different approaches exist for this purpose:
algorithms which try to reconstruct the 3Dmodel solely from color images
and algorithms which reconstruct the 3D model by fitting a template mesh
to a depth scan of the face.

e first class of algorithms reconstructs the facial geometry directly from
one or more 2D images. Tang and Huang [TH96] automatically extract
salient facial features from a front and profile face image. e detected fea-
tures are then used to adapt a coarse template mesh. Since this method re-
quires a one-to-one relationship between facial features and the vertices of
the template mesh, it can only produce very coarse reconstructions. Blanz
and Vetter [BV99] employ an iterative optimization to adapt the param-
eters of a three-dimensional morphable model by projecting the current
morphablemodel onto the image plane and thenminimizing the difference
between the pixel colors. To improve the stability of their method, the op-
timization is performed in a coarse to fine manner. Breuer et al. [BKK∗08]
use Support Vector Machines to detect the face in a 2D image and then ex-
tract facial features using a regression- and classification-based approach.
Aer that, they apply a flip-flop optimization to determine the best-fitting
morphable model for the detected features, which is, in turn, used to im-
prove the feature detection and classification. Instead of reconstructing
the three-dimensional facial model from features in 2D images, Lee et al.
[LMPM05] fit a morphable face model in such a way that the shading of
the model is as close to the shading of the input image as possible. Com-
mercially available soware tools such as AvMaker, FaceGen or FaceShop
also compute a 3D avatar from features in 2D images. ese features can ei-
ther be automatically detected or hand-picked by the user. Common to all
methods which reconstruct the 3D face model solely from photographs is
that while they can accurately reconstruct the face in feature-rich regions,
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the fitting in feature-less regions like the cheek or the forehead is rather
poor.

Methods of the second category reconstruct the 3D face by fitting a tem-
plate mesh to depth scans. Weissenfeld et al. [WSQO05] construct a multi-
resolution detail pyramid of the input face scan by successively applying
smoothing operations. Using a set of manually selected features, they fit
a generic face model to the multi-resolution detail pyramid in a coarse-to-
fine manner. Blanz et al. [BSS07] describe an iterative algorithm for fitting
a morphable model to a textured depth scan. In each iteration, the current
morphable model is projected onto a two-dimensional cylindrical image.
An energy term which considers both, the color and the depth value aer
the projection, is then minimized to get a better-fitting morphable model.
Basso and Verri [BV07] approximate the input depth scan by an implicit
function and then solve for the parameters of a morphable face model such
that the distance between the face and the depth scan is minimized. To im-
prove the convergence of their method, they split the template mesh into
four sub-meshes which are fitted independently. e sub-meshes are then
smoothly blended to obtain the final reconstruction. Li et al. [LSP08] em-
ploy a sophisticated non-linear optimization process to fit a source mesh
to a target depth scan. By enforcing local rigidity and global smoothness
of the deformation, they obtain high quality registrations given a good ini-
tial alignment. Most similar to the proposed algorithm is the work recently
published by Kim et al. [KLK∗10] since they also use non-rigid registration
to fit a common template mesh to a depth scan. However, our algorithm
is more robust in practice since we do not rely on robust 2D facial features
during the non-rigid registration and since our regularization term tries to
maintain surface features while their regularization term only minimizes
surface stretch.
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Method

6.1 Overview

e proposed algorithm automatically reconstructs a high quality 3D face
model with texture from an RGB image and a depth map by fitting a mor-
phable face model to the input data. We use the Microso Kinect sensor
to capture an RGB image and the corresponding depth map from which a
metric point cloud is computed. Using four automatically detected feature
points, we estimate an initial rigid alignment of a common template mesh
with the recorded point cloud. Since this alignment is in general not good
enough to be used as input for the morphable model fitting, we non-rigidly
register the average face of the morphable model with the input scan. Fi-
nally, we use themorphablemodel to compute the face which approximates
the deformed template face best. e result of the proposed algorithm is a
high-quality 3Dmodel of the scanned facewhich has one-to-one correspon-
dences to the faces in the morphable model. us, it can be easily analyzed,
animated or modified. To add more realism, we compute a corresponding
texture for the faces using the captured RGB data.

6.2 Data Acquisition

In this section, we briefly describe the way to obtain a raw depth image of
the face of a person sitting in front of the Kinect and the augmentation of
this image with valuable feature points as well as color information.
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Figure 6.1: Overview of the proposed avatar reconstruction. The upper image
shows our acquisition setup in action. The lower row shows the recorded color
image and depth scan and the fitted mesh without and with textures.

6.2.1 Data Preparation

To assist the calibration of the IR and the RGB camera, we use OpenCV's
calibration routines to specify the required DOFs. Aer the calibration,
the data is available as 3D point cloud with natural metric units and a cor-
responding RGB value is assigned to each point. Yet, we still maintain the
topology information in form of the 640x480 grid from the raw data to sim-
plify the feature detection and face segmentation, which requires neighbor-
hood information for each point.

e depth data we recieve from the Kinect in a single frame is quite noisy
and can contain holes at arbitrary positions. To reduce these effects, we
average the depth values of eight successive frames, which leads to a much
smoother result. Also, missing points in one frame may be compensated
by other frames in which the device was able to capture these points. In
addition, we apply a Gauss filter and simple hole-filling to the temporally

30



6.2 Data Acquisition

smoothed data, which further improves the input data. Figure 6.2 shows a
face scan at different stages of the preparation pipeline.

Figure 6.2: Data preprocessing: Left: raw data from a single frame. Middle: tem-
porally smoothed data. Right: additionally Gauss-filtered data

To avoid motion blurring artifacts, it is required that the user remains mo-
tionless for at least eight frames (0.27s) while capturing the image.

6.2.2 Face and Feature Detection

Assuming that exactly one person is sitting in front of the Kinect, we first
detect the face along with a number of significant feature points to assist the
alignment of the scanned data at a later stage. We particularly aim to detect
the middle point of each eye, the nose tip and the chin. Our idea is to locate
regions of significant face parts in the RGB image, then map these regions
onto the geometry data and to proceed the detection of feature points in the
geometry domain.

For the first part, we use OpenCV to find the bounding rectangles of the
face, the eyes and the nose in the RGB image (see Figure 6.3). Aer we
have detected the face on the entire range of the input RGB image, we re-
duce the further searching domain in the image to the face's bounding box
and detect the eyes and the nose. is reduction does not only provide bet-
ter performance, but also increases robustness since the algorithm might
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falsely identify background parts as an eye or a nose.

Figure 6.3: Facial feature detection: Left: face-, nose- and eye-detection on the
RGB image. Middle: temporary chin features (red) and search domain for the
final chin feature (blue area). Right: final feature points.

Due to the fact that the RGBdata is alignedwith the point cloud and that the
topology is the same in both spaces, we can apply the rectangular regions
directly in the geometry domain.

In order to find the nose tip, we loop through all 3D points inside the de-
tected nose rectangle and pick the one with the smallest depth value as nose
feature.

For the chin, no feature detectors are available in OpenCV which allow for
a pre-selection of the chin's region in the RGB image. As a solution, we use
the following heuristic: We first perform a line search from the detected
nose tip down the y-axis until we find a significant ascend of the depth val-
ues. e resulting point is a temporary feature point which we call the chin
edge. From this point, we sample the same line back to the nose until we
detect a local maximum of the depth values. is second temporary feature
point is named the chin groove. We now define the final chin feature to be
the point between the chin groove and the chin edge which is closest to the
camera. In order to compensate for a small roll of the subject's head (if the
main face axis is not perfectly aligned with the y-axis), we extend the search
region by a small offset of± pixels in x-direction.

An eye feature would ideally be the point on the eyeball closest to the cam-
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era. However, the resolution and the quality of the input data is not suffi-
cient to robustly find these points on the geometry. As an approximation,
we take the center point of the detected bounding box which turned out
to be a robust estimate for the initial alignment at a later stage. Figure 6.3
(right) shows the final feature points on a scanned face.

Since the feature detection runs in real-time, a person sitting in front of the
camera gets real-time feedback of the resulting face scan together with the
detected feature points (see Figure 27.1). is allows the user to optimize
his position before he eventually captures the current data. To further sta-
bilize the features, we perform a smoothing operation over various frames
as we did on the raw depth data.

6.2.3 Face Segmentation

e recorded depth data still contains unnecessary background data at this
point. In order to reduce the costs in the next steps, we separate the face
from the rest of the input data as seen in the scanned images from Figure
6.3. From the feature detection, we already know some points which defi-
nitely belong to the face. e rest of the points is found with a floodfill-like
algorithm using the detected face feature points as seed. In each recursion,
we check the four-neighborhood of a current face point whether the depth
values change by more than 5mm. If this is not the case, we add the corre-
sponding point to the list of face points and recursively call the routine with
this point. is method has turned out to robustly separate the face from
the background and the body of the user.

6.3 Fitting a Generic Face Model

e point cloud that was generated in the previous step represents the ge-
ometry of the scanned face. However, except for the few detected feature
points, the geometry does not contain any semantic information which
would be necessary to animate or further process the face. To attribute the
scanned face with a semantic meaning, we fit amorphable model [BV99] to
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Figure 6.4: Generic face fitting: (from left to right) input scan, registered average
face and best fitting morphable model.

the scan. erefore, we compute a rough initial alignment of the scanned
point cloud P and the average face T of our morphable model. Given the
previously computed features points and the corresponding points on the
generic face model, we can compute the shape-preserving transformation
which best aligns the two data sets by performing a generalized Procrustes
analysis [Gow75].

eoretically, one could now solve for the parameters of the morphable
model in such a way that it approximates the input scan as good as possible.
Unfortunately, morphablemodels are not invariant under shape-preserving
transformations which means that the input shape must be perfectly scaled
and aligned with the morphable model to generate satisfactory results. We
found that it is very difficult to produce such a rigid alignment without any
user assistance or very accurate marker positions since a registration using
the ICP algorithm [BM92] tends to converge into a local minimum if the
deformation between the source and the target shape is too large. To ob-
tain a more robust alignment for the final fitting of the morphable model,
we compute a non-rigid registration of the template model T and the input
scan.
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Given a template mesh T and a coarsly aligned input scan P , the goal of
the non-rigid registration is to find a plausible space deformation Φ such
that the distance between the deformed template mesh Φ(T ) and the input
scan P is minimized.

Following Suessmuth et al. [SZG10], we formulate the non-rigid registra-
tion as a variational problem. erefore, we define a registration energy
Ereg, which is composed of a fitting term Efit, that attracts the templatemesh
towards the input scan geometry, and an internal energy term Edef, that
serves as regularizer and prevents unnatural deformations of the template
mesh. e deformation Φ which best aligns the template mesh with the
input scan is then found by minimizing the registration energy.

6.3.1 Fitting Energy Term

As can be seen in the le image of Figure 6.4, the pre-processed scanner
data is still noisy, contains striping artifacts and may contain holes. To al-
leviate these artifacts, we do not register the template mesh directly with
the scanner data but with an implicit function f which has been fitted to it.
Since the implicit function f is computed in such a way that its zero-set ap-
proximates the input data in a least squares sense, it reduces the noise and
closes the remaining holes. Given the implicit function f : R 7→ R, the
distance d of a point x to the zero-set of f can be approximated by

d(x, f) = |f(x)|
∥∇f(x)∥

.

e distance between the deformed template mesh Φ(T ) and the zero-set
of f, which provides us with the fitting energy term, can then be defined as
the sum over the squared distances at the vertices v̂i of Φ(T ):

Efit =
∑

v̂i∈Φ(T )

(
|f(vi)|

∥∇f(vi)∥

)

(6.1)
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6.3.2 Regularization Energy Term

Weuse a variant of the embedded graph basedmesh deformation algorithm
by Sumner et al. [SSP07] to model the deformation of the template mesh.
ereby, a global space deformation is obtained by blending neighboring
affine transformations Ai(x) = Mi(x − pi) + pi + ti with local support,
which are organized in a sparse graph. Here, Mi is a 3x3 matrix, pi is the
node's position and ti is a translation vector. e local transformations
define how the surrounding space is deformed. To obtain a deformation,
which maintains local surface features, the local transformations should be
close to rigid. An energy term Erot, which punishes the deviation of a local
transformationMi from being rigid, can be defined as:

Erot(Mi) = ∥MT
i Mi − I∥F (6.2)

Since neighboring transformations have overlapping influence, they affect
a common region in space. It is therefore important that they are consis-
tent w.r.t. one another. is is enforced by a consistency energy term Econ,
which measures the distance between the position to where a graph node is
transformed by its own transformation and the position where it is mapped
to by the transformation of a neighboring graph node:

Econ(eij) =
∥∥Ai(pj)− Aj(pj)

∥∥
 (6.3)

+
∥∥Aj(pi)− Ai(pi)

∥∥
 ,

where eij is the edge connecting the two nodes i and j and pi and pj are the
respective node positions.

6.3.3 Optimization

A combination of the fitting energy term and the two regularization energy
terms leads to an energy function Ereg, which is a measure for the quality of
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a registration introduced by a given deformation graph:

Ereg = αEfit + β
∑
i
Erot(Mi) + γ

∑
eij

Econ(eij). (6.4)

Here, the first sum runs over all nodes in the deformation graph and the sec-
ond sum runs over all edges. An optimal deformation Φ, which registers
the templatemesh T with the input scan can now be computed byminimiz-
ing Equation (6.4) for the unknown node transformations using amodified
Gauss-Newton algorithm. As proposed by Li et al. [LSP08], we increase the
influence of the fitting energy in each iteration by doubling α. Initially, we
set α = , β = γ = .

6.3.4 Fitting the morphable face model

e result of the non-rigid registration step is a deformed template mesh
Φ(T ) which tightly fits the input scan. However, as can be seen in Fig-
ure 6.4 (middle), this mesh still contains the bumps and dents that were
originally present in the scanner data. To obtain the final 3D reconstruction
of the face, we fit a morphable face model [BV99] to the deformed template
obtained by the non-rigid registration. is projects the solution into the
space of reasonable faces and thereby removes the mentioned artifacts.

Since the deformed template mesh provides one-to-one correspondences
with the average shape of our morphable model, we can now robustly align
Φ(T ) with the morphable model using a Procrustes analysis again. Let T̂
be the deformed template mesh that was aligned with the average face T
of the morphable model and E the (reduced) eigenbasis of the morphable
model. We can thus construct a new face F from a given coefficient vector
c by transforming the coefficient vector back into face space and adding the
average face: F = T + E · c. We find the coefficients c of the morphable
model which approximate T̂ best by minimizing the least squares distance
to the computed morph F :

min
c

∥(T + E · c)− T̂ ∥.
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To obtain c, we solve the resulting normal equations:

ETE · c = ET · (T̂ − T ). (6.5)

Since the eigenvector matrix E is orthogonal (ETE = I), the unknown opti-
mal coefficients can be computed by a simple matrix-vector multiplication:

c = ET · (T̂ − T ). (6.6)
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Results

We have tested the proposed method on 20 individuals. In all cases, the
proposed method was able to automatically produce accurate results. e
results for four test persons are shown in Figure 17.6. As texture, we project
the RGB image back onto the reconstructed face. e morphable model
that we used for face fitting has been constructed from 53 faces [MS04],
which were registered using the proposed algorithm for non-rigid registra-
tion. For all examples shown, we used the 25 most significant principal
components of the face space to span the eigenbasis E. In the non-rigid reg-
istration, we performed six Gauss-Newton iterations to warp the template
mesh towards the input scan. e reconstruction of the fully textured facial

0mm

4mm

2mm

Figure 7.1: Comparison with ground truth data. From top left to bottom right:
depth scan, fitted result, ground truth, average shapeanddeviation fromground
truth.

39



CHAPTER 7 Results

Figure 7.2: Transferring an animation onto a captured avatar.

Figure 7.3: Face reconstruction results for four individuals. (from left to right)
input RBG-D image, processed depth scan, fitted face model and textured face
from three different views.

avatars took on average 18 seconds on an Intel Core i7 processor at 2.93GHz.
To assess the quality of the reconstructed 3D face geometries, we compare a
facemodel that was reconstructed using our algorithm to ground truth data
in Figure 7.1. e ground truth face model was generated by scanning the
test person with a high quality structured light scanner. e maximum de-
viation of our reconstruction from the ground truth model is 4.7mm, while
the average deviation is roughly 2mm. Since the morphed face model gen-
erated by our algorithm has one-to-one correspondences with the average
face, we can directly transfer semantic informations that are annotated to
the average face onto our reconstruction. For example, facial animations
(cf. Figure 7.2) can be easily cloned onto the new geometry.
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Conclusion

We have presented a novel system for the automatic generation of high-
quality personalized avatars using the Microso Kinect sensor. e pro-
posed system allows a huge audience to generate high-quality facial models
within seconds. Using non-rigid registration to compute correspondences
for the subsequent morphable model fitting makes our approach very ro-
bust and allows to generate convincing results even for bad input data.

e rather small morphable model we are using is currently one of the lim-
iting factors. We plan to extend our data base and to handle models of the
whole head. We further plan to extract geometry and texture information
from multiple views and to capture whole head scans in super-resolution
by registering the obtained input data. By using a segmented head model,
we could further improve the expressibility of the morphable model. In ad-
dition, we plan to animate the computed results and provide the user the
possibility to customize his avatar.
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CHAPTER 9

Introduction

emethod presented in Part I of this dissertation uses only a single frame
of a commodity RGB-D sensor for the reconstruction of a facial avatar.
While such a single-view setup is beneficial for the fast acquisition of data,
it introduces occlusion and sampling problems, since most of the face is ei-
ther not visible or observed from a creasing angle. is drastically limits
the size of the region on the face that can be faithfully reconstructed. In ad-
dition, a single depth frame captured by a commodity RGB-D sensor is of
comparably low quality and imposes a strict upper limit on the achievable
accuracy. To further increase the reconstruction quality, we have to exploit
the temporal coherence in the captured RGB-D stream.

Figure 9.1: Hardware setup: TheRGB-D streamof a single PrimeSenseCarmine is
used to reconstruct high-quality head models using an interactive and intuitive
reconstruction paradigm.
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Here, we present a model-based reconstruction system for the human head
that is intuitive and leverages a commodity sensor's RGB-D stream inter-
actively. Using the presented system a single user is able to capture a high-
quality facial avatar (see Figure 27.1) by moving his head freely in front of
the sensor. During a scanning session the user receives interactive feed-
back from the system showing the current reconstruction state. Involving
the user into the reconstruction process makes the system immersive and
allows to refine the result. Our system effectively creates a high-quality vir-
tual clone with a known semantical and topological structure that can be
used in various applications ranging from virtual try-on to teleconferenc-
ing.

In the following, we discuss related work (Section 10), present an overview
of our reconstruction system (Section 11.1) based on a fast GPU tracking
and fitting pipeline (Section 11.2-11.4). We sum up by showing reconstruc-
tion results, applications and ground truth comparisons (Section 12) and
give ideas for future work (Section 13).
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RelatedWork

3D-Reconstruction from RGB-D images and streams is a well studied topic
in the geometry, vision and computer graphics communities. Due to the
extensive amount of literature in this field, we have to restrict our discus-
sion to approaches closely related to this work. erefore, we will focus on
model-free and model-based algorithms that are suitable for capturing a
detailed digital model (shape and albedo) of a human head. We compare
these approaches based on their generality and applicability and motivate
our decision for a model-based reconstruction method.

10.1 Model-free 3D-Reconstruction

3D-Reconstruction mainly is about the acquisition of a real world object's
shape and albedo. is includes capturing and aligning multiple partial
scans [BM92, RL01, CM92] to obtain one complete reconstruction, data
accumulation or fusion [CL96] and a final surface extraction step [LC87]
to obtain a mesh representation. Systems based on a direct accumulation
of the input sample points [WLG08, WWL∗09] preserve information, but
scale badly with the length of the input stream. In contrast, systems based
on volumetric fusion [CL96] accumulate the data directly into a consistent
representation, but do not keep the raw input for further postprocessing
steps. e Kinect Fusion framework [NIH∗11, IKH∗11] is such a system
and made real-time 3D-Reconstruction with a moving RGB-D camera vi-
able for the first time. Because this approach deals with noise by spatial and
temporal filtering, it is prone to oversmoothing (see Figure 10.1). Model-
free approaches allow to digitize arbitrary real world objects with the draw-
back of the output to be only a polygon soup [LC87] with no topological
and semantical information attached. erefore, these reconstructions can
not be automatically animated or used in virtual reality applications.
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Figure 10.1: Comparison: Model-free approaches (Kinect Fusion,  voxel grid)
are prone to oversmoothing. In contrast to this, our model-based approach al-
lows to estimate fine-scale surface details.

Figure 10.2: Denoising: Statistical noise removal (right) better deals with noisy
input than spatial filtering approaches (left). Fine scale features are retained,
while still effectivly dealing with noise.

10.2 Model-based 3D-Reconstruction

In contrast tomodel-free approaches, model-basedmethods heavily rely on
statistical priors and are restricted to a certain class of objects (i.e., heads or
bodies). is clear disadvantage in generality is compensated by leverag-
ing the class-specific information built into the prior [BV99, BSS07, RV05,
SE09]. In general, this leads to higher reconstruction quality, because noise
can be statistically regularized (see Figure 10.2) and information can be
propagated to yet unseen and/or unobservable regions. ese properties
make model-based reconstruction algorithms the first choice for applica-
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tions that are focused on one specific object class.

Blanz and colleagues reconstruct 3D models from RGB and RGB-D input
[BV99, BSS07] by fitting a statistical head model. ese methods require
user input during initialization and registration is performed in a time con-
suming offline process. Statistical models have also been extensively used
to reconstruct templates for tracking facial animations [WBLP11, LYYB13,
CWLZ13]. While the tracking is real-time, the reconstruction is performed
offline. In addition, these methods only use depth and do not consider the
RGB channels which allows to jointly estimate the illumination and can be
used to improve tracking [WLGP09, CWZ∗14]. Othermethods specifically
focused on reconstruction are either offline or do not use all the data of the
RGB-D stream [aTH96, BKK∗08, LPMM05,WSQO05, LMT98, GKMT01].
is also includes the method presented in Part I of this dissertation. In
many cases, they only rely on a single input frame.

In contrast, ourmethod utilizes all data provided by the RGB-D stream and
gives the user immediate feedback. We specifically decided for a model-
based approach because of its superior reconstruction quality and better
reusability of the createdmodels. Applications for our reconstructions range
from animation re-targeting [SP04, WBLP11, LYYB13, CWLZ13] to face
identification [PKA∗09, RBV02], as well as virtual aging [SSSB07] and try-
on [SRH∗11]. e main three contributions of this work are:

• An intuitive reconstruction paradigm that is suitable even for unex-
perienced users

• efirst interactive head reconstruction system that leverages all avail-
able information of the RGB-D stream

• A fast non-linearGPU-basedQuasi-Newton solver that jointly solves
for shape, albedo and illumination.
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Method

11.1 Pipeline Overview

Our reconstruction system (Figure 26.1) has been completely implemented
on the GPU with an interactive application in mind. e user sits in front
of a single RGB-D sensor (see Figure 27.1) and can freely move his head
to obtain a complete and high-quality reconstruction. In the preprocessing
stage, the captured RGB-D stream is bilaterally filtered [TM98] to remove
high-frequency noise. We back-project the depth map to camera space and
compute normals at the sample points using finite differences. We track
the rigid motion of the head using a dense GPU-based iterative closest
point (ICP) algorithm. Aer the global position and orientation of the head
has been determined we use a non-rigid registration method that flip-flops
between data fusion and model fitting. We fuse the unfiltered input data
into a consistent mesh-based representation that shares its topology with
the statistical prior. is step allows for super-resolution reconstructions,

Figure 11.1: Per framepipeline (from left to right): TheRGB-D input stream is pre-
processed, the rigidheadpose is estimated, data is fusedanda joint optimization
problem for shape, albedo and illumination parameters is solved iteratively.
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Figure 11.2: Automatically detected feature points for initial alignment (left,
middle). Face region used for rigid model-to-frame alignment (right).

closes holes and fairs the data using a fast GPU-based thin-plate regularizer
[BS08]. e resulting faired displacements define the position constraints
for non-rigidly fitting the statistical model. Aer the best fitting model has
been computed, we use the solution to initialize the next flip-flop step. is
allows us to temporally fair and stabilize the target correspondences.

11.2 Head Pose Estimation

We compute an initial guess for the global head pose using the Procrustes
algorithm [Gow75]. e required feature points, c.p. Figure 11.2 (le, mid-
dle), are automatically detected using Haar Cascade Classifiers [Bra00] for
the mouth, nose and eyes. Corresponding features on the model have been
manually preselected and stay constant. Starting from this initialization,
we use a fast GPU-based implementation of a dense ICP algorithm in the
spirit of [NIH∗11, IKH∗11] to compute the best fitting rigid transformation
Φt(x) = Rtx+ tt. We render the model using the last rigid transformation
Φt− to generate synthetic position pi,j and normal images ni,j. Projective
correspondence association is used between the input and the synthetic im-
ages. e registration error between the rendered model positions and the
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target correspondences tX (i,j) under a point-to-plane metric is:

argmin
Φ̂

∑
i,j

wi,j < ni,j, Φ̂(pi,j)− tX (i,j) >
.

e corresponding ×  least squares system is constructed in parallel on
the GPU and solved via SVD.We set the correspondence weightswi,j based
on distance and normal deviation and prune correspondences (wi,j = ) if
they are too far apart (> cm), the normals do not match (> ◦) or the
pixels are not associatedwith the head. e valid region for correspondence
search, c.p. Figure 11.2 (right), is selected by a binarymask that specifies the
part of the head that stays almost rigid (red) under motion. e predicted
head pose of the current frame Φt(x) = Φ̂(x)Φt−(x) is used as starting
point for the reconstruction of the non-rigid shape.

11.3 Data Fusion

Depth data of consumer level RGB-D sensors has a low resolution, con-
tains holes and a lot of noise. We use a fusion scheme similar to Kinect
Fusion [NIH∗11, IKH∗11] to achieve super-resolution reconstructions and
effectivly deal with the noisy input. A per-vertex displacement map is de-
fined on the template model to temporally accumulate the input RGB-D
stream. Target scalar displacements are found by ray marching in normal
direction, followed by four bisection steps to refine the solution. e re-
sulting displacement map is faired by computing the best fitting thin-plate.
We approximate the non-linear thin-plate energy [BS08] by replacing the
fundamental forms with partial derivatives:

−λsΔd+ λbΔd = .

e parameters λs and λb control the stretching and bending resistance of
the surface and d are the faired scalar displacements. ese displacements
are accumulated using an exponential average. A fast GPU-based precon-
ditioned gradient descent with Jacobi preconditioner is used to solve the
resulting least squares problem. e preconditioner is constant for a fixed
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topology and can be precomputed, gradient evaluation is performed on-the-
fly by iteratively applying the Laplacian kernel to compute the bi-Laplacian
gradient component. is nicely regularizes out noise and fills holes in the
data. For RGB, we use a one-frame integration scheme to deal with illumi-
nation changes.

11.4 Estimating Model Parameters

By projecting the accumulated data into the space of statistically plausible
heads, noise can be regularized, artifacts can be removed and information
can be propagated into yet unseen regions. We pose the estimation of the
unknown shape α, albedo β and illumination γ parameters as a joint non-
linear optimization problem. Shape and albedo is statistically modeled us-
ing the Basel Face Model [BV99, PKA∗09], illumination is approximated
using spherical harmonics. In the following, we give details on the used sta-
tistical model, the objective function and show how to efficiently compute
best fitting parameters using a fast GPU-based non-linear Quasi-Newton
solver.

11.4.1 Statistical Shape Model

e used statistical shape model encodes the shape (albedo) of  heads
by assuming an underlying Gaussian distribution with mean μα (μβ) and
standard deviation σα (σβ). e principal components Eα (Eβ) are the di-
rections of highest variance and span the space of plausible heads. New
heads can be synthesized by specifying suitable model parameters α (β):

Shape : M(α) = μα + Eαα,
Albedo : C(β) = μβ + Eββ.

Synthesis is implemented using compute shaders. We use one warp per ver-
tex and a fast warp reduction to compute the synthesized position (albedo).
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11.4.2 Objective Function

Finding the instance that best explains the accumulated input observations
is cast as a joint non-linear optimization problem:

E(P) = λdEd(P) + λcEc(P) + λrEr(P).

e individual objectives Ed, Ec and Er represent the depth, color and statis-
tical regularization constraints. e empirically determined weights λd =

λc =  and λr =  remain fixed and have been used for all shown examples.
e parameter vector P = (α, β, γ) encodes the degrees of freedom in the
model. In the following, we will discuss the different objectives and their
role in the optimization problem in more detail.

Depth Fitting Term

e depth fitting term incorporates the accumulated geometric target posi-
tions ti into the optimization problem:

Ed(P) =
n∑
i=

||Φt(Mi(α))− ti||.

is functional only depends on the shape parameters α and measures the
geometric point-point alignment error for every model vertex (n vertices).
Minimizing this objective on its own is a linear least squares problem in the
unknowns α due to the linearity of the modelM.

Color Fitting Term

e visual similarity of the synthesized model and the input RGB data is
modeled by the color fitting term:

Ec(P) =
n∑
i=

||I(ti)−R(vi, ci, γ)||,
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with vi = Φt(Mi(α)) being the current vertex position, ci = Ci(β) the cur-
rent albedo and I(ti) is the RGB color assigned to the target position. is
part of the objective function is non-linear in the shape α and linear in the
illumination γ and albedo β. Illumination is modeled using spherical har-
monics (spherical environment map). We assume a purely diffuse material
and no self-shadowing:

R(vi, ci, γ) = ci
k∑

j=
γjHj(vi).

Hj is the projection of the angular cosine fall-offs on the spherical harmon-
ics basis. We use  spherical harmonics bands (k =  coefficients per chan-
nel).

Statistical Regularization

e heart of this method is a statistical regularizer [BV99] that takes the
probability of the synthesized instances into account. is prevents over-
fitting the input data. Assuming a Gaussian distribution of the input, ap-
proximately % of the heads can be reproduced using parameters xi ∈
[−σxi , σxi ]. erefore, the parameters are constrained to be statistically
small:

Er(P) =
m∑
i=

[ αi
σαi

+
βi
σβi

]
+

k∑
i=

( γi
σγi

)
.

e standard deviations σαi and σβi are known from the shapemodel, σγi =
 encodes the variability in the illumination and has been empirically deter-
mined. m specifies the number of used principal components.

11.4.3 Parameter Initialization

e objective function E is non-linear in its parameters P . erefore, a
good initial guess is required to guarantee convergence to a suitable opti-
mum. Current state-of-the-art methods heavily rely on user input in form
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of sparse marker or silhouette constraints to guide the optimizer through
the complex energy landscape. In this work, when tracking is started, we
initialize the parameters by decoupling the optimization problem into three
separate linear problems that can be solved independently. We start by fit-
ting themodel against the detected sparse set ofmarkers to roughly estimate
the size of the head. As mentioned earlier, the depth objective on its own
is a linear least squares problem in the unknown shape parameters. Aer
searching correspondences, a good approximation for α can be computed
by solving the linear system that corresponds to the first 40 principal com-
ponents. en, the illumination parameters γ are estimated separately by
assuming a constant average albedo. Finally, the albedo parameters β are
initialized by assuming the computed shape and illumination to be fixed.
Once the parameters have been initialized, a joint non-linear optimizer is
used to refine the solutions.

11.4.4 Joint Non-Linear GPU Optimizer

To refine the solutions of the uncoupled optimization problems, we jointly
solve for the parameters in each new input frame. We use a fast GPU-based
implementation of a Quasi-Newton method to iteratively compute the best
fit:

Pn+ = Pn − λ(HE(Pn))
−ΔE(Pn).

HE(Pn) is the Hessian matrix and ΔE the gradient of E, λ controls the step
size. e step size is adaptively computed based on the change in the resid-
ual. We use a simple approximation of the inverse Hessian for scaling the
descenddirections. is is similar to preconditioning [WLHM10]. Because
of the global support of the principal components, the derivatives with re-
spect to α and β are influenced by all constraints. erefore, we use one
block per variable and a fast block reduction in shared memory to evaluate
the derivatives. Per flip-flop step we perform  Quasi-Newton steps. Dur-
ing optimizationwe slowly increase the number of used principal directions
to avoid local minima in the energy landscape.
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Results

In this section, we discuss the runtime behavior of our system, compare
the reconstruction results to ground truth data obtained by a high-quality
structured light scanner and present applications that leverage the known
semantical structure of the reconstructed models.

12.1 Runtime Evaluation

Our reconstruction pipeline is completely implemented on the GPU to al-
low for interactive reconstruction sessions. e average per-frame runtime
for the examples in Figure 17.6 is shown in Figure 12.1. We used an In-
tel Core i7-3770 CPU with a Nvidia Geforce GTX 780. Note, that for the
person in the fourth row the beard could not be faithfully recovered by the
model coefficients, this is due to the fact that facial hair is not contained in
the model. But the generated texture captures and adds these details to the
reconstruction. For all presented examples, we used  flip-flop steps (with 2
Quasi-Newton steps each) and  iterations of the thin-plate solver. We start

Figure 12.1: Per frame runtime: Runtimeof thedifferent stages inour reconstruc-
tion pipeline (in ms).
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with  eigenvectors and slowly increase the number to . Note, that our
system always remains interactive and gives the user direct feedback dur-
ing the reconstruction process. For the results in Figure 17.6 the complete
scanning sessions took about − seconds each. Inmost cases, moving the
head once from right to le is sufficient to compute a high quality model.

12.2 Reconstruction Quality

To evaluate the accuracy of the presented system we compare our recon-
structions (PrimeSense Carmine 1.09) with high-quality 3D scans captured
by a structured light scanner. e scanning sessions with the structured
light setup took several minutes. As can be seen in Figure 12.2, the actual
shape difference is small and our geometry has comparable quality. Be-
cause the eyes had to remain closed during structured light scanning, most
of the error is located in the eye region. e mean error was . mm, .
mm and . mm respectively (from top to bottom).

We also compare our reconstructions to the method presented in Part I
of this dissertation (see Figure 12.3). In contrast to this approach, we can
reconstruct the complete head, illumination correct the textures and have
higher super-resolution geometry.

12.3 Applications

In this section, we discuss some applications that can directly use the recon-
structed models, see Figure 27.2. We compute a complete texture by fusing
multiple frames using pyramid blending [ABBO84], the required mask is
automatically computed using depth and angular thresholds. e illumi-
nation parameters allow to compute illumination corrected textures and
relight the head. Because of the known semantical structure, we can place a
hat on the model (virtual try-on) and add textures. e known topological
structure of the models allows to easily re-target animations (Figure 12.4).
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Figure 12.2: Ground truth comparison: Distance (right) between our reconstruc-
tions (left) and high-quality structured light scans (middle).

Figure 12.3: Comparison to the method presented in Part I: Previous method
(left), this method (right).
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Figure 12.4: Animation re-targeting: The known topology of the reconstructed
models allows to easily re-target animation sequences. The input sequence has
been taken from [SP04].

Figure 12.5: Applications: The textured models can be re-lighted, re-textured
and used for virtual try-on.
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Figure 12.6: 3D-Reconstruction results (from left to right): Input color image,
overlaid model (fitted color), overlaid model (textured), filtered input positions,
overlaid model (phong shaded), reconstructed virtual avatar (fitted color, tex-
tured, phong shaded).
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Conclusion

Wehave presented a complete system for the reconstruction of high-quality
models of the human head using a single commodity RGB-D sensor. A
joint optimization problem is solved interactively to estimate shape, albedo
and illumination parameters using a fast GPU-based non-linear solver. We
have shown that the obtained quality is comparable to offline structured
light scans. Because of the known topological and semantical structure of
the models, they can be directly used as input for various virtual reality
applications.

In the future, we plane to addmotion tracking to our system to animate the
reconstructions. We hope that we can leverage the reconstructed albedo to
make non-rigid tracking more robust.
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CHAPTER 14

Introduction

While themethods presented in Part I and Part II of this dissertation exploit
a statistical prior to obtain high-quality reconstructions given the noisy data
captured by commodity RGB-D sensors, they are restricted to a certain ob-
ject class, i.e. human heads. To be able to capture arbitrary scenes at all
different scales in real-time, a more general and yet efficient scene repre-
sentation is required.

e ability to obtain reconstructions of arbitrary scenes in real-time opens
up various interactive applications including: augmented reality (AR)where
real-world geometry can be fused with 3D graphics and rendered live to the
user; autonomous guidance for robots to reconstruct and respond rapidly to
their environment; or even to provide immediate feedback to users during
3D scanning.

Such an online reconstruction system requires incremental fusion and align-
ment of many overlapping depth maps into a single 3D representation that
is continuously refined. is is challenging particularly when real-time per-
formance is required without trading fine-quality reconstructions and spa-
tial scale. Many state-of-the-art online techniques therefore employ differ-
ent types of underlying data structures accelerated using graphics hardware.
ese however have particular trade-offs in terms of reconstruction speed,
scale, and quality.

We contribute a new real-time surface reconstruction system which sup-
ports fine-quality reconstructions at scale. Our approach carries the ben-
efits of volumetric approaches, but does not require either a memory con-
strained voxel grid or the computational overheads of a hierarchical data
structure. Our method is based on a simple memory and speed efficient
spatial hashing technique that compresses space, and allows for real-time fu-
sion of referenced implicit surface data, without the need for a hierarchical
data structure. Surface data is only stored densely in cells where measure-
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ments are observed. Additionally, data can be streamed efficiently in or out
of the hash table, allowing for further scalability during sensor motion. We
show interactive reconstructions of a variety of scenes, reconstructing both
fine-grained and large-scale environments. We illustrate how all parts of
our pipeline from depthmap pre-processing, sensor pose estimation, depth
map fusion, and surface rendering are performed at real-time rates on com-
modity graphics hardware. We concludewith a comparison to current state-
of-the-art systems, illustrating improved performance and reconstruction
quality.
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Related work

ere is over three decades of research on 3D reconstruction. In this section
we review relevant systems, with a focus on online reconstruction meth-
ods and active sensors. Unlike systems that focus on reconstruction from
a complete set of 3D points [HDD∗92, KBH06], online methods require
incremental fusion of many overlapping depth maps into a single 3D rep-
resentation that is continuously refined. Typically methods first register
or align sequential depth maps using variants of the Iterative Closest Point
(ICP) algorithm [BM92, CM92].

Parametric methods [CM92, HHI95] simply average overlapping samples,
and connect points by assuming a simple surface topology (such as a cylin-
der or a sphere) to locally fit polygons. Extensions such as mesh zippering
[TL94] select one depth map per surface region, remove redundant trian-
gles in overlapping regions, and stitchmeshes. esemethods handle some
denoising by local averaging of points, but are fragile in the presence of out-
liers and areas with high curvature. ese challenges associated with work-
ing directly with polygon meshes have led to many other reconstruction
methods.

Point-basedmethods perform reconstruction by merging overlapping data
points, and avoid inferring connectivity. Rendering the final model is per-
formed using point-based rendering techniques [GP07]. Given the output
from most depth sensors are 3D point samples, it is natural for reconstruc-
tion methods to work directly with such data. Examples include in-hand
scanning systems [RHHL02,WWLVG09], which support reconstruction of
only single small objects. At this small scale, high-quality [WWLVG09] re-
constructions have been achieved. Larger scenes have been reconstructed
by trading real-time speed and quality [HKH∗12, SB12]. ese methods
lack the ability to directly model connected surfaces, requiring additional
expensive and oen offline steps to construct surfaces; e.g., using volumet-
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ric data structures [RHHL02].

Height-map based representations explore the use of more compact 2.5D
continuous surface representations for reconstruction [PNF∗08, GPF10].
ese techniques are particularly useful for modeling large buildings with
floors and walls, since these appear as clear discontinuities in the height-
map. Multi-layered height-maps have been explored to support reconstruc-
tion of more complex 3D shapes such as balconies, doorways, and arches
[GPF10]. While these methods support more efficient compression of sur-
face data, the 2.5D representation fails to reconstruct many types of com-
plex 3D structures.

An alternativemethod is to use a fully volumetric data structure to implicitly
store samples of a continuous function [HSIW96, CL96, WSI98]. In these
methods, depth maps are converted into signed distance fields and cumula-
tively averaged into a regular voxel grid. e final surface is extracted as the
zero-level set of the implicit function using isosurface polygonisation (e.g.,
[LC87]) or raycasting. A well-known example is the method of Curless and
Levoy [CL96], which for active triangulation-based sensors such as laser
range scanners and structured light cameras, can generate very high quality
results [CL96, LPC∗00, ZK13]. KinectFusion [NIH∗11, IKH∗11] recently
adopted this volumetric method and demonstrated compelling real-time
reconstructions using a commodity GPU.

While shown to be a high quality reconstructionmethod, particularly given
the computational cost, this approach suffers fromonemajor limitation: the
use of a regular voxel grid imposes a large memory footprint, representing
both empty space and surfaces densely, and thus fails to reconstruct larger
scenes without compromising quality.

Scaling-up Volumetric Fusion Recent work begins to address this spa-
tial limitation of volumetric methods in different ways. [KLL∗13] use a
point-based representation that captures qualities of volumetric fusion but
removes the need for a spatial data structure. While demonstrating com-
pelling scalable real-time reconstructions, the quality is not on-par with
true volumetric methods.
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Moving volumemethods [RV12, WJK∗12] extend the GPU-based pipeline
of KinectFusion. While still operating on a very restricted regular grid,
these methods stream out voxels from the GPU based on camera motion,
freeing space for new data to be stored. In these methods the streaming is
one-way and lossy. Surface data is compressed to a mesh, and once moved
to host cannot be streamed back to the GPU. While offering a simple ap-
proach for scalability, at their core these systems still use a regular grid
structure, which means that the active volume must remain small to en-
sure fine-quality reconstructions. is limits reconstructions to scenes with
close-by geometric structures, and cannot utilize the full range of data for
active sensors such as the Kinect.

is limit of regular grids has led researcher to investigate more efficient
volumetric data structures. is is a well studied topic in the volume render-
ing literature, with efficient methods based on sparse voxel octrees [LK11,
KSA13], simplermulti-level hierarchies and adaptive data structures [KE02,
LHN05, BC08, RCBW12] and out-of-core streaming architectures for large
datasets [HBJP12, CNLE09]. ese approaches have begun to be explored
in the context of online reconstruction, where the need to support real-time
updates of the underlying data adds a fundamentally new challenge.

For example, [ZGHG11] demonstrate a GPU-based octree which can per-
form Poisson surface reconstruction on 300K vertices at interactive rates.
[ZZZL12] implement a 9- to 10-level octree on the GPU, which extends the
KinectFusion pipeline to a larger m × m × m indoor office space. e
method however requires a complex octree structure to be implemented,
with additional computational complexity and pointer overhead, with only
limited gains in scale.

In an octree, the resolution in each dimension increases by a factor of two
at each subdivision level. is results in the need for a deep tree struc-
ture for efficient subdivision, which conversely impacts performance, in
particular on GPUs where tree traversal leads to thread divergence. e
rendering literature has proposed many alternative hierarchical data struc-
tures [LHN05, KE02, LK11, KSA13, RCBW12]. In [CBI13] an N hierar-
chy [LHN05] was adopted for 3D reconstruction at scale, and the optimal

73



CHAPTER 15 Related work

tree depth and branching factor were empirically derived (showing large
branching factors and a shallow tree optimizes GPU performance). While
avoiding the use of an octree, the system still carries computational over-
heads in realizing such a hierarchical data structure on the GPU. As such
this leads to performance that is only real-time on specific scenes, and on
very high-end graphics hardware.
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Method

16.1 Algorithm Overview

We extend the volumetric method of Curless and Levoy [CL96] to recon-
struct high-quality 3D surfaces in real-time and at scale, by incrementally
fusing noisy depth maps into a memory and speed efficient data structure.
Curless and Levoy have proven to produce compelling results given a simple
cumulative average of samples. e method supports incremental updates,
makes no topological assumptions regarding surfaces, and approximates
the noise characteristics of triangulation based sensors effectively. Further,
while an implicit representation, stored isosurfaces can be readily extracted.
Our method addresses the main drawback of Curless and Levoy: support-
ing efficient scalability. Next, we review the Curless and Levoy method,
before the description of our new approach.

Implicit Volumetric Fusion Curless and Levoy's method is based on stor-
ing an implicit signed distance field (SDF) within a volumetric data struc-
ture. Let us consider a regular dense voxel grid, and assume the input is
a sequence of depth maps. e depth sensor is initialized at some origin
relative to this grid (typically the center of the grid). First, the rigid six
degree-of-freedom (6DoF) ego-motion of the sensor is estimated, typically
using variants of ICP [BM92, CM92].

Each voxel in the grid contains two values: a signed distance and weight.
For a single depth map, data is integrated into the grid by uniformly sweep-
ing through the volume, culling voxels outside of the view frustum, pro-
jecting all voxel centers into the depth map, and updating stored SDF val-
ues. All voxels that project onto the same pixel are considered part of the
depth sample's footprint. At each of these voxels a signed distance from the

75



CHAPTER 16 Method

voxel center to the observed surface measurement is stored, with positive
distances in front, negative behind, and nearing zero at the surface inter-
face.

To reduce computational cost, support sensor motion, and approximate
sensor noise, Curless and Levoy introduce the notion of a truncated SDF
(TSDF) which only stores the signed distance in a region around the ob-
served surface. is region can be adapted in size, approximating sensor
noise as a Gaussian with variance based on depth [CCK94, NIL12]. Only
TSDF values stored in voxels within these regions are updated using an aver-
aging scheme to obtain an estimate of the surface. Finally, voxels (in front
of the surface) that are part of each depth sample's footprint, but outside
of the truncation region are explicitly marked as free-space. is allows
removal of outliers based on free-space violations.

Voxel Hashing Given Curless and Levoy truncate SDFs around the sur-
face, the majority of data stored in the regular voxel grid is marked either
as free space or as unobserved space rather than surface data. e key chal-
lenge becomes how to design a data structure that exploits this underlying
sparsity in the TSDF representation.

Our approach specifically avoids the use of a dense or hierarchical data
structure, removing the need for a memory intensive regular grid or com-
putationally complex hierarchy for volumetric fusion. Instead, we use a
simple hashing scheme to compactly store, access and update an implicit
surface representation.

In the graphics community, efficient spatial hashing methods have been
explored in the context of a variety of 2D/3D rendering and collision de-
tection tasks [THM∗03, LH06, BC08, ASA∗09, PM11, GLHL11]. Sophis-
ticated methods have been proposed for efficient GPU-based hashing that
greatly reduce the number of hash entry collisions.

Our goal is to build a real-time system that employs a spatial hashing scheme
for scalable volumetric reconstruction. is is non-trivial for 3D recon-
struction as the geometry is unknown ahead of time and continually chang-
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ing. erefore, our hashing technique must support dynamic allocations
and updates, while minimizing and resolving potential hash entry colli-
sions, without requiring a-priori knowledge of the contained surface geom-
etry. In approaching the design of our data structure, we have purposefully
chosen and extended a simple hashing scheme [THM∗03], and while more
sophisticated methods exist, we show empirically that our method is effi-
cient in terms of speed, quality, and scalability.

e hash table sparsely and efficiently stores and updates TSDFs. In the
following we describe the data structure in more detail, and demonstrate
how it can be efficiently implemented on the GPU. We highlight some of
the core features of our data structure, including:

• e ability to efficiently compress volumetric TSDFs, whilemaintain-
ing surface resolution, without the need for a hierarchical spatial data
structure.

• Fusing new TSDF samples efficiently into the hash table, based on
insertions and updates, while minimizing collisions.

• Removal and garbage collection of voxel blocks, without requiring
costly reorganization of the data structure.

• Lightweight bidirectional streaming of voxel blocks between host and
GPU, allowing unbounded reconstructions.

• Extraction of isosurfaces from the data structure efficiently using stan-
dard raycasting or polygonization operations, for rendering and cam-
era pose estimation.

System Pipeline Our pipeline is depicted in Figure 16.1. Central is a
hash table data structure that stores sub-blocks containing SDFs, called
voxel blocks. Each occupied entry in our hash table refers to an allocated
voxel block. At each voxel we store a TSDF, weight, and an additional color
value. e hash table is unstructured; i.e., neighboring voxel blocks are not
stored spatially, but can be in different parts of the hash table. Our hashing
function allows an efficient look-up of voxel blocks, using specified (inte-
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ger rounded) world coordinates. Our hash function aims to minimize the
number of collisions and ensures no duplicates exist in the table.

Given a new input depthmap, we begin by performing fusion (also referred
to as integration). We first allocate new voxel blocks and insert block de-
scriptors into the hash table, based on an input depth map. Only occupied
voxels are allocated and empty space is not stored. Next we sweep each al-
located voxel block to update the SDF, color and weight of each contained
voxel, based on the input depth and color samples. In addition, we garbage
collect voxel blocks which are too far from the isosurface and contain no
weight. is involves freeing allocated memory as well as removing the
voxel block entry from the hash table. ese steps ensure that our data
structure remains sparse over time.

Figure 16.1: Pipeline overview.

Aer integration, we raycast the implicit surface from the current estimated
camera pose to extract the isosurface, including associated colors. is ex-
tracted depth and color buffer is used as input for camera pose estimation:
given the next input depth map, a projective point-plane ICP [CM92] is
performed to estimate the new 6DoF camera pose. is ensures that pose
estimation is performed frame-to-model rather than frame-to-frame miti-
gating some of the issues of dri (particularly for small scenes) [NIH∗11].
Finally, our algorithm performs bidirectional streaming between GPU and
host. Hash entries (and associated voxel blocks) are streamed to the host as
their world positions exit the estimated camera view frustum. Previously
streamed out voxel blocks can also be streamed back to the GPU data struc-
ture when revisiting areas.

78



16.2 Data Structure

16.2 Data Structure

Figure 16.2 shows our voxel hashing data structure. Conceptually, an in-
finite uniform grid subdivides the world into voxel blocks. Each block is a
small regular voxel grid. In our current implementation a voxel block is
composed of  voxels. Each voxel stores a TSDF, color, and weight and
requires 8 bytes of memory:

struct Voxel {
float sdf;
uchar colorRGB[3];
uchar weight;

};

To exploit sparsity, voxel blocks are only allocated around reconstructed sur-
face geometry. We use an efficient GPU accelerated hash table to manage
allocation and retrieval of voxel blocks. e hash table stores hash entries,
each containing a pointer to an allocated voxel block. Voxel blocks can be
retrieved from the hash table using integer world coordinates (x, y, z). Find-
ing the coordinates for a 3D point in world space is achieved by simple mul-
tiplication and rounding. We map from a world coordinate (x, y, z) to the
hash value H(x, y, z) using the following hashing function:

H(x, y, z) = (x · p ⊕ y · p ⊕ z · p)mod n

where p = , p = , and p =  are large prime
numbers [THM∗03], and n is the hash table size. In addition to storing
a pointer to the voxel block, each hash entry also contains the associated
world position, and an offset pointer to handle collisions efficiently (de-
scribed in the next section).

struct HashEntry {
short position[3];
short offset;
int pointer;

};
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world

hash
table

voxel
blocks

bucket

Figure 16.2: Voxel hashing data structure. Conceptually, an infinite uniform grid
partitions theworld. Usingour hash function, wemap from integerworld coordi-
nates to hash buckets, which store a small array of pointers to regular grid voxel
blocks. Each voxel block contains an  grid of SDF values. When information
for the red block gets added, a collision appears which is resolved by using the
second element in the hash bucket.

16.2.1 Resolving Collisions

Collisions appear if multiple allocated blocks are mapped to the same hash
value (see red block in Figure 16.2). We handle collisions by uniformly orga-
nizing the hash table into buckets, one per unique hash value. Each bucket
sequentially stores a small number of hash entries. When a collision oc-
curs, we store the block pointer in the next available sequential entry in
the bucket (see Figure 16.3). To find the voxel block for a particular world
position, we first evaluate our hash function, and lookup and traverse the
associated bucket until our block entry is found. is is achieved by simply
comparing the stored hash entry world position with the query position.

With a reasonable selection of the hash table and bucket size (see later),
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rarely will a bucket overflow. However, if this happens, we append a linked
list entry, filling up other free spots in the next available buckets. e (rela-
tive) pointers for the linked lists are stored in the offset field of the hash table
entries. Such a list is appended to a full bucket by setting the offset pointer
for the last entry in the bucket. All following entries are then chained using
the offset field. In order to create additional links for a bucket, we linearly
search across the hash table for a free slot to store our entry, appending to
the link list accordingly. We avoid the last entry in each bucket, as this is
locally reserved for the link list head.

As shown later, we choose a table and bucket size that keeps the number
of collisions and therefore appended linked lists to a minimum for most
scenes, as to not impact overall performance.

16.2.2 Hashing operations

Insertion To insert new hash entries, we first evaluate the hash function
and determine the target bucket. We then iterate over all bucket elements
including possible lists attached to the last entry. If we find an element with
the same world space position we can immediately return a reference. Oth-
erwise, we look for the first empty position within the bucket. If a position
in the bucket is available, we insert the new hash entry. If the bucket is full,
we append an element to its linked list element (see Figure 16.3).

To avoid race conditions when inserting hash entries in parallel, we lock
a bucket atomically for writing when a suitable empty position is found.
is eliminates duplicate entries and ensures linked list consistency. If a
bucket is locked for writing, all other allocations for the same bucket are
staggered until the next frame is processed. is may delay some alloca-
tions marginally. However, in practice this causes no degradation in recon-
struction quality, particularly as the Curless and Levoy method supports
order independent updates.

Retrieval To read the hash entry for a query position, we compute the
hash value and perform a linear search within the corresponding bucket.
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If no entry is found, and the bucket has a linked list associated (the offset
value of the last entry is set), we also have to traverse this list. Note that we
do not require a bucket to be filled from le to right. As described below,
removing values can lead to fragmentation, so traversal does not stop when
empty entries are found in the bucket.
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Figure 16.3: The hash table is broken down into a set of buckets. Each slot is
either unallocated (white) or contains an entry (blue) storing the query world
position, pointer to surface data, and an offset pointer for dealing with bucket
overflow. Example hashing operations: for illustration, we insert and remove
four entries that allmap tohash=  andupdate entries andpointers accordingly.

Deletion Deleting a hash entry is similar to insertion. For a given world
position we first compute the hash and then linearly search the correspond-
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ing hash bucket including list traversal. If we have found thematching entry
without list traversal we can simply delete it. If it is the last element of the
bucket and there was a non-zero offset stored (i.e., the element is a list head),
we copy the hash entry pointed to by the offset into the last element of the
bucket, and delete it from its current position. Otherwise if the entry is a
(non-head) element in the linked list, we delete it and correct list pointers
accordingly (seeFigure 16.3). Synchronization is not required for deletion
directly within the bucket. However, in the case we need to modify the
linked list, we lock the bucket atomically and stagger further list operations
for this bucket until the next frame.

16.3 Voxel Block Allocation

Before integration of new TSDFs, voxel blocks must be allocated that fall
within the footprint of each input depth sample, and are also within the
truncation region of the surface measurement. We process depth samples
in parallel, inserting hash entries and allocating voxel blocks within the
truncation region around the observed surface. e size of the truncation
is adapted based on the variance of depth to compensate for larger uncer-
tainty in distant measurements [CCK94, NIL12].

For each input depth sample, we instantiate a ray with an interval bound to
the truncation region. Given the predefined voxel resolution and block size,
we use DDA [AW87] to determine all the voxel blocks that intersect with
the ray. For each candidate found, we insert a new voxel block entry into
the hash table. In an idealized case, each depth sample would be modeled
as an entire frustum rather than a single ray. We would then allocate all
voxel blocks within the truncation region that intersect with this frustum.
In practice however, this leads to degradation in performance (currently
10-fold). Our ray-based approximation provides a balance between perfor-
mance and precision. Given the continuous nature of the reconstruction,
the frame rate of the sensor, and the mobility of the user, this in practice
leads to no holes appearing between voxel blocks at larger distances.
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Once we have successfully inserted an entry into the hash table, we allocate
a portion of preallocated heapmemory on theGPU to store voxel block data.
e heap is a linear array of memory, allocated once upon initialization. It
is divided into contiguous blocks (mapping to the size of voxel blocks), and
managed by maintaining a list of available blocks. is list is a linear buffer
with indices to all unallocated blocks. A new block is allocated using the last
index in the list. If a voxel block is subsequently freed, its index is appended
to the end of the list. Since the list is accessed in parallel, synchronization
is necessary, by incrementing or decrementing the end of list pointer using
an atomic operation.

16.4 Voxel Block Integration

We update all allocated voxel blocks that are currently within the camera
view frustum. Aer the previous step (see Section 16.3), all voxel blocks
in the truncation region of the visible surface are allocated. However, a
large fraction of the hash table will be empty (i.e., not refer to any voxel
blocks). Further, a significant amount of voxel blocks will be outside the
viewing frustum. Under these assumptions, TSDF integration can be done
very efficiently by only selecting available blocks inside the current camera
frustum.

Voxel Block Selection To select voxel blocks for integration, we first in
parallel access all hash table entries, and store a corresponding binary flag
in an array for an occupied and visible voxel block, or zero otherwise. We
then scan this array using a parallel prefix sum technique [HSO07]. To
facilitate large scan sizes (our hash table can have millions of entries) we
use a three level up and down sweep. Using the scan results we compact the
hash table into another buffer, which contains all hash entries that point
to voxel blocks within the view frustum (see Figure 16.4). Note that voxel
blocks are not copied, just their associated hash entries.
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Figure 16.4: Voxel block selection: in a first step, all occupied and visible hash
entries are identified. By using a parallel prefix sum scan and a simple copy ker-
nel, these are copied to a much smaller, contiguous array that can be efficiently
traversed in parallel in subsequent operations.

Implicit Surface Update e generated list of hash entries is then pro-
cessed in parallel to update TSDF values. A single GPGPU kernel is exe-
cuted for each of the associated blocks, with one thread allocated per voxel.
at means that a voxel block will be processed on a single GPU multipro-
cessor, thus maximizing cache hits and minimizing code divergence. In
practice, this is more efficient than assigning a single thread to process an
entire voxel block.

Updating voxel blocks involves re-computation of the associated TSDFs,
weights and colors. Distance values are integrated using a running average
as in Curless and Levoy [CL96]. We set the integration weights according
to the depth values in order to incorporate the noise characteristics of the
sensor; i.e., more weight is given to nearer depth measurements for which
we assume less noise. Colors are also updated according to a running aver-
age, but with much more weight given to recent color samples (to reduce
washing out colors).

One important part of the integration step is to update all voxel blocks that
fall into the current frustum, irrespective of whether they reside in the cur-
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rent truncation region. is can be due to surfaces being physically moved,
or small outliers in the depth map being allocated previously, which are no
longer observed. ese blocks are not treated any differently, and continu-
ously updated. As shown next however, we evaluate all voxel blocks aer
integration to identify such candidates for potential garbage collection.

Garbage Collection Garbage collection removes voxel blocks allocated
due to noisy outliers and moved surfaces. is step operates on the com-
pacted hash table we obtained previously. For each associated voxel block
we perform a summarization step to obtain both the minimum absolute
TSDF value and the maximum weight. If the maximum weight of a voxel
block is zero or the minimum TSDF is larger than a threshold we flag the
block for deletion. In a second pass, in parallel we delete all flagged entries
using the hash table delete operation described previously. When a hash
entry gets deleted successfully, we also free the corresponding voxel block
by appending the voxel block pointer to the heap (cf. Section 16.3).

16.5 Surface Extraction

We perform raycasting to extract the implicitly stored isosurface. First, we
compute the start and end points for each ray by conservatively rasterizing
the entire bounding box of all allocated voxel blocks in the current view frus-
tum. In parallel, we rasterize each voxel block (retrieved from the compact
hash table buffer computed during integration) in two passes, and generate
two z-buffers for the minimum and maximum depth. is demonstrates
another benefit for our linear hash table data structure (over hierarchical
data structures), allowing fast parallel access to all allocated blocks for op-
erations such as rasterization.

For each output pixel, we march a ray from the associated minimum to the
maximum depth values. During marching we must evaluate the TSDF at
neighboring world positions along the current ray. In this step, unallocated
voxel blocks are also considered as empty space. Within occupied voxel
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blocks, we apply tri-linear interpolation by looking up the eight neighbor-
ing voxels. One special case that needs to be considered is sampling across
voxel block boundaries. To deal with this, we retrieve neighboring voxels
by lookup via the hash table rather than sampling the voxel block directly.
In practice, we use hash table lookups irrespective of whether the voxel is
on a block boundary. Due to caching, reduced register count per thread,
and non-divergent code, this increases performance over direct block sam-
pling. We have also tried using a one-voxel overlap region around blocks
in order to simplify tri-linear reads without the need of accessing multiple
voxel blocks. However, that approximately doubled the memory footprint
and we found that required overlap synchronization for surface integration
bears significant computational overhead.

To locate the surface interface (zero-crossing) we determine sign changes
for current and previous (tri-linearly-interpolated) TSDF values. We ignore
zero-crossings from negative to positive as this refers to back-facing surface
geometry. In order to speed up ray marching, we skip a predefined interval
(half the minimum truncation value). is avoids missing isosurfaces but
provides only coarse zero-crossing positions. To refine further, we use iter-
ative line search once a zero-crossing is detected to estimate the true surface
location.

Camera Tracking Once the surface is extracted via raycasting, it can be
shaded for rendering, or used for frame-to-model camera pose estimation
[NIH∗11]. We use the next input frame along with the raycasted depth
map to estimate pose. is ensures that the new pose is estimated prior to
depth map fusion. Pose is estimated using the point-plane variant of ICP
[CM92] with projective data association. e point-plane energy function
is linearized [Low04] on the GPU to a  ×  matrix using a parallel re-
duction and solved via Singular Value Decomposition on the CPU. As our
data structure also stores associated color data, we incorporate a weighting
factor in the point-plane error-metric based on color consistency between
extracted and input RGB values [JBK99].
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chunks to be
streamed in

voxel blocks to be
streamed out

Figure 16.5: Data streaming: camera moves from left to right. Voxel blocks leav-
ing the camera frustum are streamed out (green). Streaming in happens on a
chunk basis (red blocks).

16.6 Streaming

e basic data structure described so far allows for high-resolution voxel
blocks to be modeled beyond the resolution and range of current commod-
ity depth cameras (see Section 17). However, GPU memory and perfor-
mance become a consideration when we attempt to maintain surface data
far outside of the view frustum in the hash table. To deal with this issue
and allow unbounded reconstructions, we utilize a bidirectional GPU-Host
streaming scheme.

Our unstructured data structure iswell-suited for this purpose, since stream-
ing voxel blocks in or out does not require any reorganization of the hash
table. We create an active region defined as a sphere containing the current
camera view frustum and a safety region around it. For a standard Kinect,
we assume a depth range up to eight meters. We locate the center of the
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sphere four meters from the camera position and use a radius of eight me-
ters (see Figure 16.5). Bidirectional streaming of voxel blocks happens every
frame at the beginning of the pipeline directly aer pose estimation.

16.6.1 GPU-to-Host Streaming

To stream voxel blocks out of the active region, we first access the hash ta-
ble in parallel and mark voxel blocks which moved out of the active region.
For all these candidates we delete corresponding hash entries, and append
them efficiently to an intermediate buffer. In a second pass, for all these
hash entries, corresponding voxel blocks are copied to another intermedi-
ate buffer. e original voxel blocks are then cleared and corresponding
locations are appended back to the heap, so they can be reused. Finally,
these intermediate buffers are copied back to the host for access.

On the host, voxel data is no longer organized into a hash table. Instead,
we logically subdivide the world space uniformly into chunks (in our cur-
rent implementation each set to m). Voxel blocks are appended to these
chunks using a linked list. For each voxel block we store the voxel block
descriptor which corresponds to hash entry data, as well as the voxel data.

16.6.2 Host-to-GPU Streaming

For Host-to-GPU streaming we first identify chunks that completely fall
into the spherical active region again, due to the user moving back to a pre-
viously reconstructed region. In contrast to GPU-to-CPU streaming which
works on a per voxel block level, CPU-to-GPU streaming operates on a per
chunk basis. So if a chunk is identified for streaming all voxel blocks in that
chunk will be streamed to the GPU. is enhances performance, given the
high host-GPUbandwidth and ability to efficiently cull voxel blocks outside
of the view frustum.

Due to limited CPU compute per frame, streaming from host-to-GPU is
staggered, one chunk per frame. We select the chunk tagged for streaming
that is most near to the camera frustum center. We then copy the chunk to
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the GPU via the intermediate buffers created for GPU-to-Host streaming.
Aer copying to the GPU, in parallel we insert voxel block descriptors as en-
tries into the hash table, allocating voxel block memory from the heap, and
copy voxel data accordingly. is is similar to the allocation phase (see Sec-
tion 16.3), however, when streaming data, all hash entries must be inserted
within a single frame, rather than staggering the insertions.

For a streamed voxel block we check the descriptor and atomically com-
pare whether the position is occupied in the table. If an entry exists, we
proceed to search for the next available free position in the bucket (as de-
scribed below, we ensure that there are no duplicates). Otherwise we write
the streamed hash entry at that position into the hash table. If the bucket
is full, the entry is appended at the end of the list. Both writing a free en-
try directly in the bucket or appending it to the end of a linked list must be
performed atomically.

16.6.3 Stream and Allocation Synchronization

One important consideration for streaming is to ensure that voxel blocks
are never duplicated on host or GPU, leading to potential memory leaks.
Given that Host-to-GPU streaming is staggered, there are rare cases where
voxel blocks waiting to be streamed may enter the view frustum. We must
verify that there is no new allocation of these voxel blocks in these stag-
gered regions. To this end we store a binary occupancy grid on the GPU,
where each entry corresponds to a particular chunk. Setting the bit indi-
cates that the chunk resides on the GPU and allocations can occur in this
region. Otherwise the chunk should be assumed to be on the host and al-
locations should be avoided. is binary grid carries little GPU memory
overhead KB for m, and can be easily re-allocated on-the-fly to ex-
tend to larger scenes.
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Results

We implemented our data structure using DirectX 11 Compute Shaders.
We use an Asus Xtion for scenes in Figure 17.5 and a Kinect for Windows
camera for all other scenes, both providing RGB-D data at Hz. Results
of live scene captures for our test scenes are shown in Figures 27.1 and 17.6
as well as supplementary material. We captured a variety of indoor and
outdoor scenes under a variety of lighting conditions. While the quality of
active infrared sensors is affected significantly in outdoor scenes, our sys-
tem still manages to reconstruct large-scale outdoor scenes with fine qual-
ity.  in Figure 27.1 shows the result aer an online scan of a∼ m
long corridor in amuseumwith about m high statues, which was captured
and reconstructed live in under 5 minutes.  (Figure 17.6 top)
shows a pathway of shops ∼ m long reconstructed live.  (Figure
17.6 middle) shows a large courtyard (stretching ∼ m × m × m) re-
constructed in approximately 4 minutes. Finally,  (Figure 17.6
bottom) shows three levels of a bookstore reconstructed in under 6minutes.

ese reconstructions demonstrate both scale and quality, and were all re-
constructed well above the Hz frame rate of the Kinect as shown in Fig-
ure 17.2. is allows for potential increase of voxel resolution and addi-
tional ICP steps for more robust camera tracking. We use a voxel size of

Figure 17.1: Example output fromour reconstruction systemwithout any geom-
etry post-processing. Scene is about mwide and m high and captured online
in less than 5 minutes with live feedback of the reconstruction.
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mm for Figure 17.3, 17.5 and mm for Figure 27.1, 17.4, 17.6. We also
tested our system with < mm voxels without visible improvements in
overall reconstruction quality. While this highlights limits of current depth
sensing technology, we believe that this opens up new possibilities for fu-
ture depth acquisition hardware.

Figure 17.2: Performance comparison: frame rate measurements across our
test scenes compared against two state-of-the-art reconstruction methods. Ex-
tended (ormovingvolume) regular grids and thehierarchicalapproachof [CBI13].

17.1 Performance

We measured performance of our entire pipeline including run-time over-
head (such as display rendering) on an Intel Core i7 3.4GHz CPU, 16GB of
RAM, and a single NVIDIA GeForce GTX Titan. Average timings among
all test scenes is .ms (∼fps) with .ms (% of the overall pipeline)
for ICP pose estimation (15 iterations), .ms (%) for surface integration,
.ms (%) for surface extraction and shading (including colored phong
shading), and .ms (%) for streaming and input data processing. Sepa-
rate timings for each test scene are provided in Figure 17.2.

Our data structure uses a total of MB for the hash table and all auxiliary
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Figure 17.3: Quality and scale comparison with related systems. Bottom right:
Our method maintains a large working volume with streaming at frame-rate (in
this example mm voxels). Top: moving volumes based on regular grids. With
the same physical extent, the voxel resolution is coarse and quality is reduced
(top left), but tomaintain the same voxel resolution, the size of the volumemust
be decreased significantly (top right). Bottom left: the performance bottleneck
of hierarchical grids leads to more tracking drift, and reduces overall quality.

buffers. is allows a hash table with  entries, each containing 12 bytes.
Our experiments show that a bucket size of two provides best performance
leaving us with about 1 million buckets. We pre-allocate GB of heap mem-
ory to provide space for voxel data on the GPU.With  voxels per block (8
byte per voxel) this corresponds to  voxel blocks. Note that  hash en-
tries only index to  voxel blocks resulting in a low hash occupancy, thus
minimizing hash collisions.

On average we found that about K voxel blocks are allocated when cap-
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turing our test scenes at a voxel size of mm (varying with scene complex-
ity). is corresponds to an equal amount of occupied hash entries, result-
ing in a hash table occupancy with K buckets with a single entry, and
K buckets with two entries. With a bucket size of two and hash table size
of , all test scenes run with only 0.1% bucket overflow. ese are handled
by linked lists and across all scenes the largest list length is three. In total
∼700 linked list entries are allocated across all scenes, which is negligible
compared to the hash table size.

On average less than MBmemory is allocated for surface data (less than
MB with color). is compares favorably to a regular grid that would
require well over GB (including color) at the same voxel resolution (mm)
and spatial extent (m in depth). is also leaves enough space to encode
RGB data directly into the stored voxels (see Figure 17.6).

In practice this simple hashing schemewith small bucket size and large hash
table size works well. In our scenario we can tolerate larger and sparser ()
hash table sizes, because the memory footprint of the hash table is insignif-
icant (∼34MB) compared to the voxel block buffer (which is pre-allocated
to GB). Smaller hash table sizes cause higher occupancy and decrease per-
formance. For example, in the  scene our standard settings (
elements) occupies∼6.4% of the hash table and runs at∼21ms, with 200K
elements occupancy rises to∼65% and performance is reduced to∼24.8ms,
and with 160K elements occupancy rises to ∼81% with performance fur-
ther falling to 25.6ms. In our live system, we chose larger table sizes as we
favored performance over the small memory gains. Our pipeline currently
uses atomic operations per hash bucket for allocation and streaming. As
shown by our timings across all scenes, these sequential operations cause
negligible performance overheads, due to hash collisions being minimal.

More sophisticated hashing approaches as [LH06, BC08, ASA∗09] or the
methods of [PM11, GLHL11] could reduce collisions and allow to decrease
the hash tables further. However, how these methods deal with the high
throughput of data, fusion and streaming is unclear. It is also important
to stress that our simple hashing method works well in practice, handling
scalability and quality at framerates>40fps across all scenes.
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Figure 17.4: Comparisonof camera trackingdrift: in gray the results of thehierar-
chical approach of Chen et al. [CBI13] and in yellow our results. Note the twisting
in the final models for Chen's approach; e.g., the center of the Queens and left
hand side of the Passageway reconstruction.

17.2 Comparison

In Figure 17.4 we show the quality and performance of our method com-
pared to previous work. All code was tested on the same hardware (see
above) with a fixed number of ICP iterations (). As our algorithm sup-
ports real-time streaming, we conducted comparisons with similar mov-
ing volume approaches. First, we compare against Extended Fusion [RV12,
WJK∗12] that use a regular uniform grid including streaming to scale-up
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Figure 17.5: Comparison of output meshes from our online method (top) with
the offline method of [ZK13] (bottom).

volumetric fusion. Second, we compare againstHierarchical Fusion [CBI13]
that supports larger moving volumes than other approaches. Correspond-
ing timings are shown in Figure 17.2. emost significant limitation of the
hierarchy is the data structure overhead causing a performance drop, par-
ticularly in complex scenes. In our test scenes the entire hierarchy pipeline
(including pose estimation, fusion, and streaming) runs at ∼ Hz, which
is lower than the input frame rate. Note that these measurements are based
on the reference implementation by Chen et al. [CBI13]. Our system also
performs favorably compared to streaming regular grids in terms of frame-
rate (labeled Extended in Figure 17.2). We attribute this to processing of
empty voxels in the regular grid (particularly during random GPU mem-
ory access; e.g., raycasting) and streaming overhead.

Further, as shown in Figure 17.3, our reconstruction quality is higher than
these approaches. e quality of Extended Fusion is limited by the small
spatial extent of the moving volume, which means much of the Kinect data
is out of range and not integrated. Hierarchical Fusion suffers from the
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poor frame rate causing input data to be skipped. is severely affects pose
estimation quality resulting in inaccurate surface integration and dri. In
large-scale scenes this type of dri might cause unnaturally twisted models
as shown in Figure 17.4.

Given our more efficient data structure, which runs faster than the Kinect
camera frame rate, additional time can be spent improving the accuracy of
the pose estimation by increasing the number of ICP iterations. We find
our results encouraging, particularly given no dri correction is explicitly
handled. In Figure 17.5 scenes captured and processed offline using the
method of [ZK13], which uses a multi-pass global optimization to mitigate
dri, are compared to our online method. While our method does suffer
from small dris, our system produces comparable results, and can be used
for real-time applications. Our online method can also be used as a live
preview, and combined with such approaches for higher-quality offline re-
construction.
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Figure 17.6: Reconstructions of the captured test scenes: a pathway of shops
(passageway), a large courtyard (queens) anda three level bookstore (bookshop).
Shown left: the input data from the Kinect sensor (depth and color) and the live
raycasted view of our system (shaded and shaded color).
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Conclusion

We have presented a new data structure designed specifically for online
reconstruction using widely-available consumer depth cameras. Our ap-
proach leverages the power of implicit surfaces and volumetric fusion for
reconstruction, but does so using a compact spatial hashing scheme, which
removes both the overhead of regular grids and hierarchical data struc-
tures. Our hashing scheme supports real-time performance without for-
going scale or finer quality reconstruction. All operations are designed to
be efficient for parallel graphics hardware. e inherent unstructured na-
ture of our method removes the overhead of hierarchical spatial data struc-
tures, but captures the key qualities of volumetric fusion. To further extend
the bounds of reconstruction, our method supports lightweight streaming
without major data structure reorganization.

Wehave demonstrated performance increases over the state-of-the-art, even
regular grid implementations. e data structure is memory efficient and
can allow color data to be directly incorporated in the reconstruction, which
can also be used to improve the robustness of registration. Due to the high
performance of our data structure, the available time budget can be utilized
for further improving camera pose estimation, which directly improves re-
construction quality over existing online approaches.

We believe the advantages of our method will be even more evident when
future depth cameras with higher resolution sensing emerge, as our data
structure is already capable of reconstructing surfaces beyond the resolu-
tion of existing depth sensors such as Kinect.
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CHAPTER 19

Introduction

In Part III of this dissertation we have presented an approach to digitize the
shape and appearance of arbitrary physical objects and scenes using just a
commodity RGB-D sensor. e acquired three-dimensional models can be
readily used as props in computer games, movie productions and virtual
reality applications. If the virtual object only undergoes rigid motion in the
application, the captured static descriptionmight be sufficient. To allow for
fully articulated non-rigid motion, i.e. of a running virtual character, we
have to explicitly model its time varying behavior. ereby, the creation
and use of fully animated virtual characters will be possible in our everyday

Figure 19.1: Theproposed lattice baseddeformation approach allows to deform
a raptor model with 1.7 million polygons in real-time.
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life.

Modeling the time varying behavior requires the creation of all different
poses the individual characters should be able to adopt. Artists usually need
a lot of knowledge about the underlying deformationmodels to accomplish
this labor-intensive task. To make the artist's life easier and allow the gen-
eral public to use these techniques, current research focuses on interactive
and intuitive modeling paradigms. ose give the users the possibility to
directly manipulate high-resolution characters using a small number of ver-
tex constraints. Unconstrained parts of the characters should automatically
follow the user's input in real-time. A natural and physically plausible look
of the deformations is of major importance for the authenticity of the gen-
erated animations. is means, that the deformations should be globally
consistent and local details of the characters (e.g., the raptor's eye in Figure
27.1) should be preserved.
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Previous Work

Free-FormDeformation [SP86] allow tomodel space deformations byman-
ually moving control points of a lattice. Although this scheme is conceptu-
ally simple, it is quite hard to model a specific deformation of an embedded
object.

In [IMH05], the authors present a handle based approach to deform two-
dimensional shapes in a distortion minimizing way. As-rigid-as-possible
surface modeling (ARAP) [SA07] minimizes a surface based deformation
energy to obtain detail preserving mesh edits. Because the optimization is
formulated on the mesh's geometry, interactive modeling is impossible for
complex meshes. e idea of the graph based deformation scheme by Sum-
ner et al. [SSP07] is to decouple the optimization from the mesh's complex-
ity. Primo [BPGK06] and its extension [BPWG07] are based on a decom-
position of the object in rigid volumetric cells. As regularizer, the cells are
connected by elastic forces. In [ZHS∗05] a quadratic optimization problem
is solved on a graph given extrapolated local transformations. In contrast,
we use the non-linear ARAP energy which optimizes for local rotations and
employ a multi-resolution GPU solver.

Most similar to our work is Hybrid Mesh Editing [BHZN10], which ap-
plies the as-rigid-as possible paradigm to an automatically generated con-
trol cage and uses mean value coordinates as transfer function. In compari-
son to their approach, ours is volume-aware and allows for direct manipula-
tion. Since we deform the surrounding space, we can easily handle models
with disconnected parts (e.g., the girl and the trees in Figure 22.1). In ad-
dition, we propose a data-parallel multi-resolution implementation which
allows us to pose even meshes with millions of triangles in real-time.

Our lattice based as-rigid-as possible (LARAP) deformation paradigm al-
lows artists to pose high-quality characters in an interactive and intuitive
manner. We combine the well-known ARAP approach with automatically
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generated control lattices to decouple the algorithm's complexity from the
complexity of the characters. e regular structure of the lattice allows us
to define an efficient multi-resolution approach for solving the optimiza-
tion problem. To exploit the inherent parallelism, we present a highly data-
parallel implementation on the GPU.
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Method

21.1 Proxy Geometry Generation

A key requirement for interactive mesh manipulation is real-time perfor-
mance. To achieve this for highly-detailed meshes, we have to decouple
the runtime complexity of the optimization problem from the mesh's com-
plexity. is can be done efficiently by computing the optimal deformation
on a proxy geometry and transferring it to the original mesh. While in
theory arbitrary proxy geometries like cages, skeletons or scaffolds may be
used, we decided to use a uniform lattice as it will allow us to quickly solve
the non-linear optimization problem in a straight-forwardmulti-resolution
way. Further on, a uniform lattice allows us to simulate solid objects, yield-
ing volume-aware deformations. As shown in Figure 21.1, we place a uni-
form lattice around the input mesh and then delete all cubes that lie entirely
outside the input geometry, yielding a volumetric proxy structure.

Next we need to link the mesh to the proxy geometry. A straightforward
approach to link the mesh's vertices to the control lattice would be to ex-
press each vertex as tri-linear interpolation of the cube's corners that con-
tains it. However, since this could result in artifacts, we will propose a
more thorough scheme for binding the vertices to the control lattice in Sec-
tion 21.3. For now, let us assume that we can express each mesh vertex vj

Figure 21.1: Grid generation on a uniform 6x10 voxel grid.
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as a linear combination of appropriate control points ci of the lattice, i.e.,
vj =

∑
i αi,jci.

21.2 Modeling

In an interactive modeling session, the user first selects several vertices of
the input geometry that will further serve as handles. If the handles are
moved, the associated mesh vertices should move as well and the uncon-
strained parts of the input mesh should deform in a physically intuitive way.
To obtain such a deformation, we use the as-rigid-as-possible surface mod-
eling (ARAP) paradigm proposed by Sorkine and Alexa [SA07], which is
based on the observation that if an object locally preserves its shape as good
as possible everywhere, the object's global deformation will be smooth and
plausible. Given an arbitrary graph G consisting of nodes ci and edges eij in
a rest pose and a deformed instance of this graph G′ whose geometric em-
bedding is defined by the nodes c′i , the ARAP energy at a node ci is defined
as the portion of the transformation between the local neighborhood of ci
and c′i that cannot be represented by a rigid transformation. By defining the
local neighborhood as the one-ringNi of the node ci and by summing over
the local per-nodeARAP errors, we obtain an energy functionE(G,G′) that
measures the plausibility of the deformation from G to G′:

E(G,G′) =
∑
i

∑
j∈Ni

∥∥∥(c′i − c′j)− Ri(ci − cj)
∥∥∥ , (21.1)

where the Ri are the rotation matrices that minimize the local deformation
energies [SA07]. During interactivemodeling, we seek to find the positions
c′i of the control lattice nodes such that the energy in Equation (21.1) is min-
imized -- as this will result in a natural deformation -- under the constraints
that the control lattice transforms all handle vertices vj ∈ HV to the posi-
tions tj defined by the user. Since we can express each vertex as a linear
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Figure 21.2: The volume-awareness of LARAP (right) prevents the surface col-
lapsing artifacts typical for ARAP (left).

combination of lattice points, this can be stated as follows:∑
i
αi,jc′i = tj ∀vj ∈ HV . (21.2)

Since we may have more constraints than unknown lattice points c′i , the
above problemmay be over determined. To be able to solve the problem in
general, we relax the problem and solve for the constraints in a least squares
sense as well:

Elarap(G,G′) = γE(G,G′) +
∑

vj∈HV

∥∥∥∥∥∑
i
αi,jc′i − tj

∥∥∥∥∥


, (21.3)

where γ balances the influence of the regularization and the constraint term
(we use γ = . for all our examples). Solving Equation (21.3) for the un-
known lattice points c′ = {c′i} requires solving a non-linear optimization
problem in the unknowns {Ri} and {c′i}. Fortunately, similar to [SA07],
the solution can be found using an iterative flip-flop optimization, where
in one step the grid points are kept fixed and the energy term is minimized
for the unknown rotations {Ri} using SVD (see [SA07] for details). en
we solve for the grid points {c′i} thatminimize the energy in Equation (21.1)
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for fixed {Ri}. Since Elarap is quadratic in the {c′i}, the optimal grid points
can be found by solving the linear system

(γL+ BTB) · c′ = γb+ BTt,

where L is the uniform Laplacian of the lattice, B is a matrix containing
the constraints from Equation (21.2) as rows, t is the vector containing the
handle positions and b is a vector whose ith row is

∑
j∈Ni

Ri+Rj
 (ci − cj).

Since the weights are local, the matrix B is sparse. us the system can be
solved efficiently using a sparse solver for semi-definite systems. By iter-
atively solving for the {Ri} and then for the {c′i}, interactive modeling is
usually possible with 3-8 of these steps.

21.3 Preliminary Results

When comparing our method to the original ARAP algorithm, one appar-
ent advantage of our approach is that we decouple the complexity of the
deformation from the tessellation of the input geometry, which allows us
to deform high quality production meshes in real time. Furthermore, since
ARAP only aims at preserving the surface, unnatural folds may occur when
bending the surface (Figure 21.2). We can easily prevent such artifacts by
using a solid cube lattice.

Using simple tri-linear weights (i.e., encoding each vertex with respect to
the surrounding lattice cell) for transferring the deformation from the con-
trol lattice onto the input geometry results in a piecewise linear deformation
field which is only C continuous across cells as can be seen in Figure 21.3.
While this is usually sufficient for real-time editing, generating the final
high quality poses requires a more elaborate weighting scheme. erefore,
we propose to use quadratic B-Spline weights when exporting the manip-
ulated models, as this results in a C continuous deformation field. Each
vertex is then encoded with respect to the 27 grid points of the surround-
ing cells. Note that using B-Spline weights requires all cubes that contain a
vertex to have a complete set of neighboring cubes. is can be guaranteed
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Figure 21.3: Comparison between tri-linear (middle) and B-Spline (right)
interpolation.

by dilating the set of marked voxels during cage generation.

21.4 GPU based Implementation

e decoupling of the optimization problem from the mesh's complexity
already results in an enormous speed-up. However, a closer analysis of the
proposed algorithms reveals that many parts of the presented algorithms
can be computed entirely in parallel -- namely the computation of the SVDs
and right-hand sides for each lattice point and the interpolation for each
model vertex. Weutilized this observation and implemented the entire algo-
rithm on theGPUusing CUDA. In each flip-flop iteration, we first compute
the optimal rotations for each control point's one-neighborhood in parallel.
en we update the right-hand side using the newly computed rotations.
In the last step of the flip-flop iteration, we compute new positions for the
lattice's control points using our parallel linear solver on the GPU. Because
of the sequential dependence of these three steps, we have to synchronize
between the corresponding kernel calls. We solve the linear system using
either a parallel Gauss-Seidel like solver or a parallel gradient descent. New
improved positions of neighbouring control points are used as soon as they
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P C

Model Polygons Control Points SVD/RHS Solve Interpolation
∑

Raptor 17k 10k 9.2 13.4 0.6 71.2
Raptor 170k 10k 9.4 12.6 6.6 75.6
Raptor 1.7M 10k 9.4 13.3 68 142
Dragon 2M 5k 6.1 7.7 79 122
Dragon 2M 20k 28 43 85 303
Dragon 2M 40k 53 85 84 504

Table 21.1: Timings: CPU implementation of our deformation paradigm (inms).

P G

Model Polygons Control Points SVD/RHS Solve Interpolation
∑

Raptor 17k 10k 1.2 11.7 0.6 44
Raptor 170k 10k 1.2 11.4 0.8 44
Raptor 1.7M 10k 1.2 11.2 1.7 45
Dragon 2M 5k 0.9 7.3 1.7 31
Dragon 2M 20k 1.5 30.0 2.0 103
Dragon 2M 40k 2.0 68.6 2.4 222

Table 21.2: Timings: GPU implementation of our deformation paradigm (inms).

are available. is depends on the scheduling of the threads on the GPU.
Aer a user-defined number of flip-flop iterations has been performed, we
use an interpolation kernel to transfer the deformation of the lattice onto
the input geometry.

e performance of the non-linear LARAP optimization can be improved
even more by solving the problem in a multi-resolution manner. Start-
ing from the finest control lattice, we create a hierarchy of lattices by al-
ways joining 8 adjacent cubes. Each lattice is then encoded w.r.t. the next
coarser cage. We first solve for the deformation of the coarsest cage, trans-
fer it onto the next finer cage and use the resulting positions as the starting
point for another LARAP optimization, and so on. All these operations
are performed in a data-parallel manner on the GPU, we can even map the
deformed model directly to the rendering pipeline.
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Results

We tested our algorithm on the different (multi-part, polygon soup, high
detail) models shown in Figures 27.1 and 22.1. A summary of computa-
tion times on the CPU and the GPU is given in Table 21.1 and 21.2. All
timings were measured on a Core i7  CPU (using 8 threads) with an
NVidia GeForce 580 GPU. Note that the timings refer only to solving on
the finest hierarchy level.

∑
denotes the total time for solving the non-

linear optimization (3 flip-flop steps with 800 Gauß-Seidel like iterations
each, data transfer and interpolation).

When using the multi-resolution solver, we use 3 flip-flop iterations with

Figure 22.1: Poses generated using our interactive mesh deformation tool. The
girl and the tree models contain multiple unconnected components.
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200 Gauß-Seidel like iterations on each hierarchy level. Multi-resolution
solving takes in total 71ms for the 2M faces Dragon model using a cage
with 40k cubes in the finest lattice, which is another 300% speedup.
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Conclusion

We introduced LARAP, a novel paradigm for interactive and intuitive mesh
editing. Using a simple lattice as proxy geometry decouples the algorith-
mic complexity from themesh's geometric complexity. Since the algorithm
is based on the simple ARAP optimization loop, it is also easy to imple-
ment. In combination with the proposed data-parallel multi-resolution im-
plementation of the non-linear solver, we can interactively deform even
high-quality meshes.

In the future, we plan to construct the lattice hierarchy in a topology pre-
serving way (i.e., avoid that cubes that were not connected at a finer level
are merged) as this will decouple the parts of the model that have a small
Euclidean but large geodesic distance in coarse resolution lattices. Addi-
tionally, by using an octree and monitoring the deformation error, we plan
to locally solve the optimization problem only up the resolution on which
the deformation error vanishes.
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CHAPTER 24

Introduction

In Part IV of this dissertation, we have shown that a user can easily breath
life into a static three-dimensional model using the presented interactive
and intuitive deformation approach. Despite its good usability and the real-
time preview of the modeled poses, manually creating all poses of a com-
plex animation sequence is still a tedious and time consuming task. is
overhead can be drastically reduced by using an RGB-D sensor to also cap-
ture the object's time varying behavior. Unfortunately, the captured RGB-
D stream contains no information about space-time correspondences be-
tween the captured frames. If we want to extract an object's animation
sequence given such data, we have to track the object's non-rigid motion
through time. is will allow us to store the object's motion in a consistent
and compact manner.

In addition, the ability to reconstruct the fine-grained non-rigid motions
and shape of physical objects in a live and temporally consistent manner
opens up many new applications. For example, in real-time, a user can
re-target their motions and detailed expressions to avatars for gaming or
video conferencing. An actor's performance and motions can be captured
online for live feedback and preview. By reconstructing the detailedmotion
and shape of surfaces, systems can overlay digital content onto the physical
world inmore convincingways; e.g., for virtual clothing, makeup, and other
augmented reality applications. Finally, deforming physical objects can be-
come props for digital interaction, further bridging the gap between real
and virtual worlds.

Despite considerable advances in the field of non-rigid tracking and recon-
struction, there has been limited work on real-time techniques that work
on general scenes. In special cases such as hands, faces or full bodies, re-
searchers have demonstrated compelling real-time reconstructions of non-
rigid articulatedmotion [OKA11, TSSF12] and shape [WBLP11, CWLZ13].
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However, these rely on strong priors based on either pre-learned statistical
models, articulated skeletons, or morphable shape models, prohibiting cap-
ture of general scenes. Reconstruction techniques that can handle more
general scenes are far from real-time in terms of performance, and need
seconds to hours to compute a single frame [HVB∗07, LZW∗09, LAGP09].

We present the first real-time reconstruction system capable of capturing
a variety of non-rigid shapes and their deformations. As demonstrated,
our entire pipeline from depth acquisition to non-rigid deformation runs
at 33ms per frame, orders of magnitude faster than state-of-the-art meth-
ods, while achieving reconstruction quality and robustness that approach
offline methods with more complex sensor setups.

Our system is markerless, uses a single self-contained stereo camera unit,
and consumer graphics hardware. e stereo camera is built from off-the-
shelf components and uses a new stereo matching algorithm to generate
RGB-D images, with a greater degree of flexibility and accuracy than cur-
rent consumer depth cameras. Using this camera, a smooth templatemodel
of the rigidlymoving subject is acquired online. is acts as a geometric and
topological prior for non-rigid reconstruction, but avoids strong assump-
tions about the scanned scene, such as a kinematic skeleton or a parametric
shape model (e.g., for faces, hands or bodies) that would limit the general-
ity of our system. en, for each live RGB-D frame, a novel GPU pipeline
performs non-rigid registration to the acquired template model with an as-
rigid-as-possible (ARAP) regularizer and integrates detail using a thin shell
deformation model on a displacement map [SA07].

We show precise real-time reconstructions, including: large deformations
of users' heads, hands, and upper bodies; fine-scale wrinkles and folds of
skin and clothing; and non-rigid interactions performed by users on flexible
objects such as toys. We demonstrate how acquired models can be used
for many interactive scenarios, including re-texturing, online performance
capture and preview, and real-time shape and motion re-targeting.
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e emergence of depth cameras, such as the Kinect, has spawned new
interest in real-time rigid 3D scanning as exemplified by systems such as
KinectFusion [NIH∗11, IKH∗11] or the method presented in Part III of
this dissertation. It is therefore a natural next step to think about online
capture of non-rigid scenes using RGB-D cameras. Interestingly, follow-
up work based on KinectFusion specifically focused on scanning humans
(e.g., for 3Dprinting or generating avatars) where the user rotates in front of
the Kinect while maintaining a roughly rigid pose, these include [WHB11,
LVG∗13, TZL∗12, ZZCL13,HBB∗13]. Similar to [BR07,WWL∗09], in these
offline systems non-rigid registration techniques are employed to accommo-
date for small deviations in themotion between different viewpoints. ese
systems aremotivated by producing a singlemesh as output from anRGB-D
sequence, whereas we wish to continuously reconstruct non-rigid motions
during live capture.

Many multi-camera techniques for non-rigid reconstruction of geometry
and motion have been proposed. Some are specifically motivated by mod-
eling complex human motion and dynamic geometry, including people
with general clothing, possibly along with pose parameters of an underly-
ing kinematic skeleton (see [TdAS∗10] for a full review). Some methods
employ variants of shape-from-silhouette [WWC∗05] or active or passive
stereo [SH07]. Model-based approaches deform a static shape template (ob-
tained by a laser scan or image-based reconstruction) such that it matches
a human [dAST∗08, VBMP08, GSDA∗09] or a person's apparel [BPS∗08].
Vlasic et al. [VPB∗09] use dynamic photometric stereo in a sophisticated
controlled light stage dome with multiple high-speed cameras to capture
temporally incoherent geometry of a human at high detail. In the work of
Dou et al. [DFF13] precise surface deformations are captured using an eight-
Kinect rig, by deforming a human template, generated from aKinectFusion
scan, using embedded deformation [SSP07]. Other methods jointly track
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a skeleton and the non-rigidly deforming surface [VBMP08, GSDA∗09],
while some treat the template as a generally deformable shape without skele-
ton and use volumetric [dAST∗08] or patch-based [CBI10] deformation
methods.

ese multi-camera approaches have runtime performances far from real-
time, and require dense camera setups in controlled studios, with sophis-
ticated lighting and/or chroma-keying for background subtraction. How-
ever, with the availability of consumer depth cameras, lightweight camera
setups have been proposed in [HVB∗07, LZW∗09, LAGP09] and [WBLP11,
VWB∗12, CIF12, WSVT13, GVWT13]. Ye et al. [YLH∗12] capture multi-
person performances with three moving Kinects. Furthermore, in special
cases, such as for hands, faces and full bodies, researchers have demon-
strated compelling real-time reconstructions of articulatedmotion [OKA11,
WZC12, TSSF12] and/or non-rigid shape andmotion [WBLP11, CWLZ13,
HBB∗13]. However, these rely on strong priors based on either an offline
learned model [TSSF12], an articulated skeleton [OKA11] or morphable
shape model [BV99, WBLP11, HBB∗13, CWLZ13], which prohibits cap-
ture of general scenes. Additionally, these real-time methods are unable
to reconstruct high-frequency shape detail obtained with state-of-the-art
offline approaches.

e approach of [LAGP09] uses a coarse approximation of the scanned ob-
ject as a shape prior to obtain high quality non-rigid reconstructions. Other
non-rigid techniques do not require a shape or template prior, but assume
small and smooth motions [ZZCL13, WAO∗09, MFO∗07]; or deal with
topology changes in the input data (e.g., the fusing and then separation
of hands) but suffer from dri and oversmoothing of results for longer se-
quences [TBW∗12, BHLW12]. ese more general techniques are far from
real-time, ranging from seconds to hours to compute a single frame.

Our system attempts to hit a `sweet spot' between methods that can recon-
struct general scenes, and techniques that rely on a stronger shape prior
(e.g., a blendshape face model or body or hand skeleton), which are begin-
ning to demonstrate real-time performance. To our knowledge, our system
is the first that provides real-time performance, several orders ofmagnitude
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faster than general methods, but does not require a specific `baked in' kine-
matic or shape model. Instead our system allows users to acquire a tem-
plate online, and use this for live non-rigid reconstructions. Our system
is simple to use and self-contained, with a single lightweight stereo cam-
era setup, moving closer to commodity or consumer use. Additionally, in
terms of reconstructed geometry detail, our method also narrows that gap
between offline and online methods. is simplicity and real-time perfor-
mance however does not come at a significant cost of reconstruction quality
(as shown in the results section), and brings us a step closer to high-quality
real-time performance capture systems for consumer scenarios, including
gaming, home and semi-professionalmovie and animationproduction, and
human-computer interaction.

e specific contributions of this work are:

• A general, real-time, non-rigid reconstruction pipeline, non-trivially
realized on the GPU. While in the spirit of previous non-rigid re-
construction frameworks, in particular Li et al. [LAGP09], our GPU
pipeline is orders of magnitude faster, with many algorithmic and
implementation differences.

• e creation of a fully automatic real-time non-rigid capture system.
is allows novice users to quickly generate template models of ar-
bitrary objects, whose motions and non-rigid deformations can be
captured with live user feedback.

• An interactive application of our non-rigid reconstruction pipeline
that demonstrates spatio-temporal coherent models for motion and
shape re-targeting in video games, performance capture, and aug-
mented reality.

• A lightweight visible light and infrared (IR) stereo camera setup for
generating compelling RGB-D input at real-time rates, which allows
us to capture higher quality RGB-D data at closer ranges than con-
sumer depth cameras.
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26.1 System Overview
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Figure 26.1:Main system pipeline. Le: the initial template acquisition is an
online process. Multiple views are volumetrically fused, and a multi-resolution
mesh hierarchy is precomputed for the tracking phase. Right: in the tracking
phase, each new frame is rigidly registered to the template, and a sequence of
calls to the GPU-based Gauss-Newton optimizer is issued from coarse to fine
mesh resolution. At the finest resolution, detail is integrated using a thin-plate
spline regularizer on the finest mesh.

Our system is designed to deal with close range non-rigid reconstructions
of single objects, such as faces, hands, upper bodies, or hand held physical
objects. e general usage scenario is illustrated in Figure 27.1, and the
system pipeline in Figure 26.1, and comprises two phases: online template
acquisition and real-time non-rigid reconstruction.

e first part of the pipeline is a online template acquisition phase that takes
∼1 minute to perform. e user sits or stands in front of our custom RGB-
D sensor (up to 1½ meters away from the sensor). First, the desired ob-
ject is scanned while undergoing mostly rigid deformations. Immediate
feedback is provided during scanning using the volumetric fusion frame-
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work presented in Part III of this dissertation, from which a triangle mesh
model is automatically extracted. e mesh is preprocessed to create a
multi-resolution hierarchy to be used in the online phase.

e second phase of our pipeline performs real-time non-rigid reconstruc-
tion, which produces a deformed mesh at every time step, executing the
following three steps at every frame:

1. Rigid registration roughly aligns the template to the input data.

2. Non-rigid surface fitting by minimization of a fitting energy which
combines dense geometric and photometric constraints, as well as
an as-rigid-as-possible (ARAP) regularizer. e energy isminimized
using a new efficient GPU-based Gauss-Newton solver using the pre-
conditioned conjugate gradientmethod (PCG) in its inner loop. is
solver is applied in a coarse-to-fine manner, using a multi-resolution
mesh hierarchy prepared at template acquisition. At each level, the
fitting energy is optimized at the current resolution using several it-
erations of Gauss-Newton, and then a prolongation step interpolates
the solution to the next finer level.

3. Detail integration at the finest template level: a thin-shell deforma-
tion energy undermodel-to-data constraints isminimized by solving
a linear least squares system for displacements along the model nor-
mal at each vertex.

ese components are now explained in detail aer a description of our
custom stereo sensor.

26.2 Lightweight Active Stereo Sensor

For acquisition, we designed a new RGB-IR stereo rig which reconstructs
pixel synchronized RGB-D data in real-time. e use of a custom depth
camera provides us with a greater deal of flexibility than consumer sensors.
In particular, our specific scenario requires close range capture at high qual-
ity, and most existing sensors are limited in these terms. For comparison,
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in Section 27 we will also present results of our system running with a con-
sumer Kinect camera.

e sensor comprises a fully-calibrated pair of video cameras of resolution
×  providing both RGB and IR images with the same center of pro-
jection (by employing a beam splitter). For high-quality depth computa-
tion, we employ Kinect-type infrared emitters in order to project a suitable
pattern onto the surface to be reconstructed. In contrast to the Kinect sen-
sor in our setup, the emitters are not calibrated with respect to the cameras
and can be placed freely to maximize the coverage of the emitted pattern in
the scene. For further technical details see the supplemental material.

For real-time depth acquisition we use a patch-match based stereo algo-
rithm inspired by [BRR11], but in analogy to [PRI∗13] we reduce the search
space complexity significantly bynot estimating local surface normals. us,
the only unknown to be determined at pixel p (at location (up, vp)) is the
scene depth Dp. Further, we deviate from the original propagation sched-
ule of patch-match stereo to achieve better GPU utilization. Our patch-
match stereo algorithm can be summarized as follows: the starting phase to
initialize the depth map with random samples is followed by four (le-to-
right, top-to-bottom, right-to-le, and bottom-to-top) propagation steps,
where thematching score of the current depth hypothesis is compared with
the one of the respective neighboring pixel, and the better scoring depth
value is retained. is propagation strategy allows all rows (or columns)
of the image to be easily processed in parallel in the GPU implementa-
tion. We use the zero-mean normalized cross-correlation (ZNCC) com-
puted over  ×  windows as a matching score to assess the similarity of
image patches. e advantage of our patch-match stereo implementation
is its high speed (100Hz to estimate × depth images), but all patch-
match inspired algorithms produce piece-wise constant outputs with an un-
desired ``blocky'' appearance. Consequently, we refine the raw depth map
produced by our patch-match stereo method using a variational approach,
which combines the (local) matching score profile with a global smooth-
ness prior as follows: if we denote the depth map returned by patch-match
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stereo as D̂p, then we minimize

E(D) =
∑
p

αp
(
Dp − D̂p

)
+

∑
(p,q)∈E

ωpq
(
Dp − Dq

) (26.1)

with respect to the depth values D = [D, ...,DWH], with E the set of 4-
neighbor pixel pairs. We model the local behavior of the matching scores
near D̂p using a quadratic model, i.e., we fit a quadratic function to the
matching scores of D̂p − , D̂p, and D̂p + . is determines the coeffi-
cient αp. In general, the local quadratic model of matching scores should
be a convex parabola, i.e., αp > , if D̂p is at a (local) minimum. We avoid
a non-sensible concave parabola fitted to the matching scores by setting
αp =  in these cases. Our regularizer prefers smooth depth maps, but
we avoid smoothing over depth discontinuities by using a contrast-aware
regularization term, i.e., we introduce weights ωpq ∈ [, ] for neighboring
pixels p and q, which are based on strong color edges in the RGB images,
ωpq = /(+ β∥∇IL(up, vp)∥). Here IL(·) denotes the le color image, and
β is a tuning parameter always set to 20. e objective in Equation 26.1
is quadratic in the unknowns D, and we use a GPU-implemented succes-
sive over-relaxation (SOR) solver to obtain the refined depth values. Since
we are only interested in estimating and retaining depth for foreground ob-
jects, we utilize a simple, color-based background subtraction step to dis-
card depth values corresponding to undesired background.

Our active sensor has a variety of advantages over existing real-time scan-
ners or low-cost depth cameras. e use of active (infrared) illumination
allows high-quality shape acquisition without solely relying on the object's
texture (as in passive stereo) or distorting the color image (as in some fringe-
based techniques). Our stereo setup allows the baseline between the cam-
eras to be modified easily in order to adapt to the observed volume of in-
terest. Changing the baseline in our setup requires a standard geometric
calibration procedure to determine the new relative pose between the cam-
eras. is is in contrast to the Kinect camera, which has a fixed baseline and
would require a more difficult projector-camera calibration if the baseline
is changed. Compared to time-of-flight cameras, it features a much higher
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Figure 26.2: Left: our active stereo sensor. Middle: patch-match result. Right:
Result after variational refinement.

depth and image resolution and does not suffer from their well-known sys-
tematic data distortions due to light modulation, reflectance dependencies
and multi-path light transport [KBKL09]. We employ a prototype setup
built from standard vision cameras and do not have the same small form
factor as mass-manufactured depth cameras. However, in mass production
similar form factors and production cost could be achieved while maintain-
ing its technical advantages.

26.3 Surface Tracking as Model Fitting

Our template model is a hierarchy of triangle meshes (typically three lev-
els; see Figure 26.1) where vertices of a finer level are connected by a space
deformation to the next coarser level [SSP07]. is connection is used to ap-
ply the prolongation operator (see Section 26.3.2). e hierarchy levels are
computed through a series of mesh simplification and Laplacian smooth-
ing steps. Note that the transition between template capture and non-rigid
tracking is fully automated and seamless, requiring a few seconds to exe-
cute.

Each trianglemesh is definedbyn verticesV = {vi ∈ R | i = {, . . . , n}}
andm edges. emesh topology is constant during tracking, and is queried
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only via the setsNi, which hold the indices of vertices sharing an edge with
vertex i. is allows the use of non-manifold meshes, and indeed we use
internal edges on some sequences to add a weak form of volume preserva-
tion; i.e., we tetrahedralize the template interior. Any internal vertices have
visibility flags (see below) permanently zeroed.

26.3.1 Energy Function

Our goal in surface tracking is to determine, at time t, the 3D positions of
the model vertices Vt = {vti}ni=, and global rotation and translation Rt,
tt. is will be achieved by running a Gauss-Newton solver on a suitable
energy function, using the values (Vt−,Rt−, tt−) from the previous time
step as an initial estimate. As each frame is processed otherwise indepen-
dently, the t superscripts are dropped below.

We are given as input a depth image dwhich maps 2D points u to 3D world
points using the sensor output and the known camera calibration informa-
tion, so d(u) ∈ R. We also have data normals n : R 7→ R computed
by Sobel filtering on the depth map. ese images are evaluated at non-
integer locations using bilinear interpolation, and the derivatives ∇ud(u)
and∇un(u) are therefore also well-defined.

e energy function is a sum of data terms, which encourage every visible
model vertex to be as close as possible to the sampled data, and regulariz-
ers which control the smoothness of deformations and motion. Visibility
is defined by a variable ηi associated with each model vertex, and is deter-
mined statically before each Gauss-Newton solve by rendering the model
under the current parameters. In practice this computes correct visibilities
for the majority of data points and a robust kernel in the energy handles the
remainder.
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Data Terms

e data termmeasures the distance to the closest data point, and is written
with an explicit minimization over the corresponding 2D image position u:

Epoint(V) = λpoint
n∑
i=

ηi min
u

ψ
(
∥vi − d(u)∥

σd

)
, (26.2)

where σd is an estimate of sensor noise, and ψ is a robust kernel similar
to Tukey's biweight, but with additional properties, described below. In
practice, including the closest-point search within the energy gives a com-
plicated energy surface, so we ``li'' the innerminimizers to become search
parameters U = {ui}ni=

Epoint(V,U) = λpoint
n∑
i=

ηiψ
(
∥vi − d(ui)∥

σd

)
. (26.3)

Note that this is exact: Epoint(V) = minU Epoint(V,U). In essence, we are
trading complexity of the energy surface for a /-fold increase in the num-
ber of unknowns. It does not imply an iterated closest point strategy of
alternating minimization over V and U, which is known to have poor con-
vergence properties. Rather, it suggests a simultaneous optimization over
all unknowns, which is particularly important near the optimum. Also, as
will be shown below, the new unknowns lead to a simple and sparse aug-
mentation of the system Jacobian, so that optimization runtime is only very
mildly affected by the increase in problem size. Although one could use the
values from the previous timestep as an initial estimate for U, a more effec-
tive strategy is described in Section 26.3.3.

To further improve the properties of the energy, we adopt the common strat-
egy of including a point-to-plane term

Eplane(V,U) = λplane
n∑
i=

ηiψ
(
n(ui)⊤(vi − d(ui))

σn

)
(26.4)

which allows incorrectly assigned correspondences to ``slide'' along the sur-
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Figure 26.3: Robust kernel (Section 26.3.1). (a)Our kernel ψ(e) (blue) has similar
shape to the standard Tukey's biweight kernel (red). (b)A2D line fitting problem
with two minima. Data points yi ≈ mxi + c. (c) Energy landscape of f(m, c) =∑

i ψ(yi − mxi − c) is complicated. (d) 3D slice through ( + n) dimensional
landscape of lifted function F(m, c,w, ...,wn) =

∑
i w


i (yi−mxi−c)+(−w

i )


is simpler. Minimization of lifted F found the global optimum on 82.4% of runs,
in contrast to 43.0% on two-parameter f, which also had 20.1% outright failures
vs. 0% on lifted.

face, thus improving convergence. Again, σn is a noise level estimate.

We further encourage vertices to preserve their RGBappearance from frame
to frame with a color term

Ecolor(V) = λcolor
n∑
i=

ηiψ
(
∥Ii − I(π(vi))∥

σc

)
, (26.5)

where π is the projection from 3D to image coordinates, known from cam-
era calibration, and Ii = It−(π(vt−

i )) is a color attached to each vertex
from the previous timestep. In our implementation only the intensity chan-
nel is used. Here σc is the noise level of the RGB sensor.
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Robust Kernel

A further amelioration of the energy surface is obtained by rewriting the
non-convex robust kernel ψ(e) using a similar ``liing'' technique as was
used for the correspondences. As the wide variety of published robust ker-
nels might indicate, the precise shape of ψ is not of great importance, but it
should typically have a standard form: linear or quadratic for small e values,
reducing to linear or constant for larger e. We observe that the function

ψ(e) = min
w

(
we

τ
+ (− w)

)
=

{
e
τ (−

e
τ ) if e < τ

 otherwise

has the shape in Figure 26.3(a), which has the required properties. τ is a
width parameter, normally set to 1. Applying this in our framework again
uses the liing trick, so that terms of the form

E(Θ) =
∑
i
ψ(fi(Θ)) =

∑
i
min
w

(
wfi(Θ) + (− w)

)
become, when lied to depend on parameters W = {wi}ni=

E(Θ,W) = 
∑
i
w
i fi(Θ) +

∑
i
(− w

i )
. (26.6)

Again, the number of parameters increases, but the error function is more
amenable to optimization (see also Figure 26.3). Note that this is the same
weighting used in [LSP08], but the connection to robust estimation was not
made there. We avoid introducing separateW vectors for each energy term
by applying the robust kernel to sums of terms per vertex. at is, we replace

∑
α∈{point,plane,color}

λα
∑
i
ψ(fαi (Θ)) →

∑
i
ψ
(√∑

α
λαfαi (Θ)

)

where the fα are the residual terms in (26.3), (26.4), (26.5), so the robust
kernel is applied to the sum of the squared residuals, not to each separately.
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Shape Regularizer

e geometric prior term Ereg forces local deformations of the surface to
be as close possible to isometry, and thus approximates elastic deformation
behavior. e as-rigid-as-possible (ARAP) framework [SA07]measures de-
formation between a pair of meshes V, V̂ as follows

D(V, V̂) = min
R,...,Rn

n∑
i=

∑
j∈Ni

∥(vi − vj)− Ri(v̂i − v̂j)∥

= min
R

D(V, V̂,R) (26.7)

In our energy, ARAP controls the deformation of the shape in the current
frame from the rigidly transformed initial template RV + t as follows:

Ereg(V,R,R, t) = λregD(V,RV + t,R) (26.8)

e distance measure is itself a minimization problem over n rotations,
and is typically solved via an alternating block coordinate descent strategy.
Again, we prefer to li the innerminimization parameters into a blockR =

{R, ...,Rn}, and solve for them simultaneously with all others in order to
enjoy the superlinear convergence of the Gauss-Newton method. Our im-
plementation parameterizes R by Euler angles, so the energy is more cor-
rectly written Ereg(V,R(Φ)) where Φ is a vector of n angle parameters.
Notice that the global transformation parameters are not strictly necessary
here, because D(V, V̂) = D(V,RV̂ + t), but their inclusion will improve
our initial estimates, and ensures the Euler angles are always parameteriz-
ing near-identity rotations, avoiding gimbal lock.

26.3.2 Energy Minimization: Gauss-Newton Core Solver

To summarize the above, we wish to minimize, at every timestep, the sum

E(Vt,U,W,Φ,R, t) = Epoint(Vt,U,W) (26.9)
+ Eplane(Vt,U,W) + Ecolor(Vt) + Ereg(Vt,R(Φ),R, t).
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e main computational tool will be a Gauss-Newton solver. e primary
requirement for such a solver is that the energy function be in the form of
a sum of squared residuals, that is that if x is the vector of unknown param-
eters, we have

E(x) =
∑
i
fi(x) = ∥f(x)∥.

is form is ensured by the various liing transformations described above,
noting that terms of the form ψ(∥e∥), which expand to include w∥e∥ =

we + ..., are stacked into x as we.

At solver iteration k, a Gauss-Newton iteration step updates a parameter
vector xk as

xk+ = xk − h with J⊤Jh = J⊤f (26.10)

where J is the Jacobian of f evaluated at xk, with (i, j)th entry Jij = ∂fi
∂xj .

To compute h, we have to solve a linear system, which we do iteratively
using a preconditioned conjugate gradient (PCG) solver, the essential com-
putational unit of which is repeated multiplication of the Jacobian by a vec-
tor. e key to real-time performance is thus to implement routines for the
computation of Jh (and J⊤h) as efficiently as possible. is is enabled by ex-
ploiting the particular sparsity structure of J, illustrated in Figure 26.4. To
make this structure as sparse as possible, we implement a hybrid optimizer:
the global parameters R and t are estimated in an initial ICP step, andW is
updated in an outer loop. is means the core solver is optimizing the n
variables x = (V,U,Φ), giving the structure in Figure 26.4.

GPU Implementation of Jacobian Multiplication

We never compute the Jacobian explicitly, but compute its entries on-the-
fly in the routines for Jh and J⊤h. is strategy, common in CPU-based
optimizers (e.g., see [WY10], or the JacobMult parameter to the 
function lsqnonlin), has less computational overhead [WMdS∗05] on the
GPU, but does not appear to bewidely employed in the vision, graphics, and
learning literature, where many implementations appear to explicitly store
an (unstructured) Jacobian.
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Figure 26.4: Block structure of the (V,U,Φ) Jacobian (transposed). The Jaco-
bian is never stored explicitly; instead the products Jh and J⊤h are computed on
demand on the GPU.

Tomultiply J and J⊤ with a vector h, we use two computational kernels. e
first one multiplies a given row i of J with a given vector h. According to
the row i, the kernel determines which energy term is used, which columns
are not equal to zero, computes the non-zero entries and immediately mul-
tiplies them with the appropriate entries of h and sums them up.

e second kernel does the same for J⊤. Yet, in this kernel each row corre-
sponds to a parameter, so the kernel has to determine the non-zero entries
in the ith column of J and compute the scalar product. By this, we can well
exploit the sparsity of J, and the GPU vector capabilities. Computing Jh or
J⊤h requires only one kernel call with n and n+ m threads, respectively.

As a further optimization, both kernels interpret the h as a vector of 3D
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26.3 Surface Tracking as Model Fitting

floats. Furthermore, rows of J and J⊤ are merged to 3D floats. is allows
us to map multiple operations to float3 vector arithmetic.

Preconditioned Conjugate Gradient on the GPU

As well as implementing Jacobian multiplication on the GPU, we also im-
plemented the PCG solver itself. In its loop, we have to evaluate the matrix-
vector product J⊤(Jh), which we can do very efficiently as shown above,
but also a number of other terms. A naive implementation would require
12 kernel calls in the inner loop, where the kernel switches dominate com-
putation. So instead we use a variant of the fast PCG-solver described by
Weber et al. [WBS∗13]. is solver reduces the number of kernel calls in the
inner loop to three. However, since in our case the system matrix is JTJ, we
end up with four kernel calls. We use block diagonal preconditioning. e
inverses of the diagonal blocks of J⊤J are precomputed in the initialization
stage of PCG, using a similar kernel to the Jacobian multipliers.

Energy Minimization: Coarse-to-fine Outer Loop

e previous sections describe the energy minimization for the model ver-
tices at a single resolution. For both speed and accuracy, a multi-scale op-
timizer is used.

In an outer loop, the solver iterates over the mesh hierarchy from coarse
to fine. In its inner loop, it optimizes for the optimal deformation on the
current resolution as described in Section 26.3.2. At the end of the inner
loop, a prolongation step transfers the solution on the current hierarchy
level to the next finer one as described by Sumner et al. [SSP07], using the
weights from Li et al. [LAGP09]. e weights are precomputed at the time
of creation of the initial template model. We found that it was necessary
to apply prolongation not just to the model vertices V but also to the rota-
tion parameters Φ. e latter is performed by estimating rotations at the
new scale using the closed-form Kabsch algorithm to solve (26.7) before
starting Gauss-Newton. In conjunction with this hierarchical solving strat-
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egy, a number of other continuation strategies are used to improve speed
and/or convergence. Each run of theGaussNewton solver is limited to −
iterations. On the finest hierarchy level, we apply an exponential average in
order to reduce temporal flickering. Note that this only affects visualization,
but not the optimization procedure.

e parameters which affect the location of energy minima are the energy
weights λpoint, λplane, λreg and the robust kernel width τ, and their setting is
discussed below. Typically λpoint = ., λplane = . can be kept fixed, and
the value of λreg is chosen to coarsely reflect the amount of deformation in
a given sequence. ese settings are for the finest scale of the hierarchy. To
improve convergence at the coarser scales, λreg is increased by a factor of 20,
and τ by 10, so that only gross outliers are rejected. Note that these param-
eters affect only the rate of convergence, not the location of the energy min-
imum, which is affected by rather fewer parameters (see next paragraph).
is can certainly mean that with different settings, the model may or may
not converge completely in one frame if the object has undergone fast mo-
tion, but it will typically converge in a number of frames, particularly if the
object slows down (see Figure 27.3)

26.3.3 Initialization: Correspondence Finding

As mentioned above, initialization of Vt simply takes the value from the
previous frame, and initialization of Φ is to the parameters of the identity
rotation. e parameters U represent, for each model vertex, the image
location of the closest point to the vertex, and given that d(u)may be quite
non-smooth, a more careful initialization is warranted. is is achieved
by a simple local search in a window around the previous frame's estimate
transformed by the global transformation R, t:

uti = argmin
u∈Qi

∥R(vt−
i ) + t− dt(u)∥

where the windowQi is πt(R(vt−
i )+ t)+ [−, ]× [−, ]. For speed,

this is computed in two stages: first checking only every third pixel in Qi,
then checking all pixels in a  ×  window around the sub-sampled an-
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26.3 Surface Tracking as Model Fitting

swer. e GPU implementation uses an efficient parallel block reduction
in shared memory.

At this stage, we can also update the visibility flags {ηi}ni= to discard corre-
spondences to data points that lie close to the boundaries to the background.
We also threshold the orientation difference between data point (provided
by finite differencing) and model vertex normals, and impose a maximal
distance threshold between associated point pairs.

26.3.4 Detail Integration

e result of energy minimization is a mesh at the second-finest resolution
whichmatches the data, but does not feature fine-scale details, such as folds
or wrinkles, that may be present in the current depth data. Because such
transient surface details cannot be built into the initial template model, we
prolong the fitted result to the finest hierarchy level and add the missing
detail by computing in the least-square-sense optimal per-vertex scalar dis-
placements di along the vertex normal.

Since themesh is already very close to themeasured data, the residual detail
displacements can be assumed to be small. erefore, the following algo-
rithm can be used that fulfills our speed and plausibility requirements. We
assume a thin shell deformationmodel whoseminimal energy deformation
state is found byminimizing the stretching and bending energies expressed
as the differences in the first and second fundamental forms [BS08]. e
thin shell deformation energy is simplified by replacing the change of first
and second fundamental forms by changes of first and second order partial
derivatives of the 3D displacement function r on the surface. is deforma-
tion energy is minimized by variational calculus, and linearization yields
the following Euler Lagrange equations [BS08]:

−λsΔr+λbΔr =  (26.11)
with Δr = div∇r = ruu + rvv

Δr = ruuuu + ruuvv + rvvvv

139



CHAPTER 26 Method

Here, ru, ruu, and ruuuu are the first, second, and fourth partial derivatives of
r w.r.t the surface parameterization of the template mesh; v-directions are
defined analogously. λs and λb define stretching and bending resistance, re-
spectively. To obtain the target displacements for each vertex, we find the
closest intersection point in the input data by raymarching in normal di-
rection. e resulting intersection point is further refined using a simple
bisection approach. We incorporate the resulting target displacements as
so-constraints into the optimization problem. In our case, r is the residual
displacement field on the mesh, and can be found by minimizing Equation
26.11 under the so constraints using the fast GPU-based preconditioned
conjugate gradient solver from Section 26.3.2. As initial guess for the it-
erative solve, we use the computed displacements for the previous frame
to warm start the optimizer leading to fast convergence. Given the noise
in the input data, we employ a temporal averaging scheme, similar to Li et
al. [LAGP09], based on exponential weighting to compute the final displace-
ments. is nicely removes noise, while still being responsive to changes in
transient surface detail.
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Results

Now that we have described our system in detail, in this section we present
a variety of results from live capture, ground truth experiments, and com-
parisons to existing work.

27.1 Live Non-rigid Capture

Our system is fully implemented on the GPU using CUDA. Results of live
scene captures for our test scenes are shown in Figures 27.1 and 27.5 as well
as in the supplementary material. It is important to stress that all these se-
quences were captured online and in real-time, including depth estimation

Figure 27.1: Our system enables the real-time capture of general shapes under-
going non-rigid deformations using a single depth camera. Top left: the object
to be captured is scanned while undergoing rigid deformations, creating a base
template. Bottom left: the object is manipulated and our method deforms the
template to track the object. Top and middle row: we show our reconstruction
for upper body, face, and hand sequences being captured in different poses as
they are deformed. Bottom row: we show corresponding color and depth data
for the reconstructed mesh in the middle row.
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and non-rigid reconstruction. Further, these sequences are tracked over
long time periods comprising several minutes.

We captured a variety of diverse non-rigidly moving and deforming ob-
jects. e table in Figure 27.5 shows the number of vertices in the differ-
ent hierarchy levels, and indicates whether a tetrahedralized version of the
mesh has been used to incorporate weak volume constraints. In the F
sequence, we show how our system can generate compelling reconstruc-
tions of faces. Our results convey subtle expressions including detailed
skin deformations and wrinkles. Our system also models large deforma-
tions captured during actions such as talking, frowning, and smiling, and
demonstrates the benefits of modeling the fine facial deformations. is is
in contrast to existing real-time methods based on parametric morphable
models [LYYB13, WBLP11, WLGP09], which oen fail to convey facial de-
tails.

However, our system is also able to reconstruct many other types of scenes
beyond faces. In the H and U B sequence, we show two chal-
lenging sequences which exhibit large amounts of occlusions when the user
either places the hand in front of his/her body or significantly bends the
fingers. Despite these occlusions our system is able to track non-rigid mo-
tions, although extreme poses and rapid motions can cause errors. In the
T and B sequence, we finally show how our method can generalize
to non-human tracking and reconstruction.

27.2 Performance

Wemeasured performance of our entire non-rigid tracking pipeline includ-
ing run-time overhead on an Intel Core i7 3.4GHzCPU, 16GB of RAM, and
a single NVIDIAGeForce GTX780. e average timing (see Table 27.1 and
27.2) among all test scenes (see also Figure 27.5) is .ms (i.e., .fps)
with .ms for preprocessing (computing derivatives of normals, depth,
and color data) (% of the overall pipeline), .ms (.%) for rigid ICP
pose estimation (on average 4 iterations), .ms (%) for the non-rigid
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#vert. #vert. #vert. tetr.
coarse medium fine mesh #frames

F 1.2k 2.5k 20k no 1490
H 0.6k 2.5k 20k yes 587
B 1.2k 2.5k 40k no 813
T 1.0k 2.5k 40k no 599
B 1.1k 2.5k 20k yes 1500

Table 27.1: Used settings for the different deformable objects.

Prepro- Rigid Non-Rig. Lin.
cess Fit Fit Fit Misc Sum

F 4.65 3.22 20,9 2.46 1.16 32.4
H 4.60 2.62 20,6 2.70 0.79 31.3
B 4.66 3.12 19,5 4.20 1.16 32.6
T 4.58 2.84 19,0 4.69 0.80 31.9
B 4.64 2.85 26.3 2.73 0.80 37.3
Avg. 4.62 2.93 21.3 3.36 0.94 33.1

Table 27.2: Timings for different deformable objects.

fitting on the coarse andmediummesh level (×Gauss-Newton iterations,
each with 10 PCG iterations), and .ms (%) for fine detail integration
( iteration steps). On top of this, the timings of our stereo matcher are
17ms, or alternatively 26ms with variational refinement enabled. Note that
in our current implementation we run the depth estimation on a separate
second GPU, which allows for a complete runtime of 33ms (30fps) for our
full pipeline by introducing a delay of one frame.

27.3 Applications

is type of non-rigid capture enables many compelling applications as
shown in Figure 27.2. In the R- sequence we demonstrate a real-
time, motion re-targeting scenario, where the user controls two avatars by
transferring detailed non-rigid motions and expressions. Real-time avatar
re-targeting can lead to new scenarios for gaming or video conferencing,
where more detailed shape and motion can be reconstructed resulting in
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Figure 27.2: Applications for live non-rigid capture. Left: detailed facial expres-
sions are re-targeted. Right: spatio-temporal coherent re-texturing of template
meshes for the same input sequence.

Figure 27.3: Convergence of the non-rigid deformation. The spikes correspond
to new frames. Note convergence ``through'' the new-frame spike on the last
frame of ``Face''.

more expressive user experiences. We use a simple re-targeting method
by manually specifying a sparse set of per-vertex correspondences between
our reconstructed template and the new target mesh. We use these corre-
spondences to drive the animation usingmesh skinning. Although this sim-
ple approach produces compelling results, more advanced re-targeting tech-
niques such as [SP04] could easily be applied. Our live system can also be
used for performance and motion capture in home and semi-professional
movie and animation production. In the R- sequence (Figure
27.2) we demonstrate how the estimation of detailed deformations enables
convincing augmented reality applications such as pasting digital content
onto non-rigidly deforming physical objects. Application scenarios include
virtual clothing and makeup. Our deformation regularization prevents ge-
ometric dri which keeps texturing locally stable.
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Figure 27.4: Energy of the ARAP regularizer at each vertex for the B example.

27.4 Evaluation

FittingandRegularizationError Figure 27.3 shows the fitting error with
respect to the iteration count over several frames of the examples F,
H, and B. e spikes in the graph coincide with the arrival of new
input frames. To examine convergence, we perform 8 Gauss-Newton itera-
tion steps per frame on a single hierarchy level, with 20 PCG iterations in
the inner loop. It can be seen that the registration converges quickly and
in most of the cases, convergence is reached in less than 5 Gauss-Newton
iterations.

e energy of the ARAP regularizer for example scenes is provided in Fig-
ure 27.4. is allows us to localize the regions undergoing locally non-rigid
deformations in real-time. Interesting areas of future work include lever-
aging the ARAP residuals to either: 1) refine the template model in these
regions (akin to the method of Li et al. [LAGP09]) in order to adapt the de-
formation model to the seen deformations, or 2) use this residual error to
localize user interactions with objects. For example, in the ball sequence we
clearly identify where the user is touching and pressing the ball. is leads
to the possibility of making such physical objects interactive and enables
new types of user experiences, e.g., for gaming.
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F sequence

H sequence B sequence

T sequence U  sequence

Figure 27.5: A number of different deformable objects during a live session. The
corresponding timings and properties of the tracked template model are given
in Table 27.1 and 27.2.
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Figure 27.6: Ground truth comparison. Left: detailed input data. Middle: recon-
struction from synthetic depth maps. Right: fitting error.
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27.5 Comparisons

In Figure 27.6, we compare results obtained with our system with ground
truth data. To this end, we used data from [VWB∗12]. We generate syn-
thetic depth maps by rendering the mesh from a single view. Our method
is applied using eight Gauss-Newton iteration steps with  PCG iterations
in the inner loop. e figure compares renderings of the original mesh and
our reconstruction, as well as plots of the deviation for three frames of the
animation, where red corresponds to a fitting error of 3mm. is shows that
our algorithm can match the facial expression and fine scale details exhib-
ited in this sequence. e method of Valgaerts et al. is an offline technique,
with has a runtime of about  minutes per frame on the CPU. Our results
show qualitatively similar results but with a system that is about 4 orders of
magnitude faster, and with the ability to track a variety of general objects
beyond faces.

Figure 27.7 shows a comparisonwith the results of Li et al. [LAGP09]. Both
sequenceswere generated from the same input data. In both cases the recon-
structed mesh has k vertices. Whereas Li's method requires more than
one minute per frame on the CPU1, our novel GPU pipeline runs at almost
Hz and is thus more than three orders of magnitude faster.

27.6 Other Reconstruction Scenarios

Our technique can also be applied to multi-view setups. In Figure 27.8, we
show reconstructions obtained with our method from the data sets S
and S from [VBMP08]. e figure also shows a reconstruction of the
 data set [VPB∗09], which demonstrates our ability to deal with mo-
tions that cannot be parameterized by a skeleton. Formultiple views, our re-
construction pipeline has to performmore work in the preprocessing stage
of the pipeline, processing the data from each camera separately. We as-
sign each vertex to the best suited camera, based on visibility and orienta-

1Timings by Li et al. [LAGP09]; expected to run faster on current CPUs.
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Figure 27.7: Comparison of our real-time reconstruction (top row) with offline
reconstructions [LAGP09] while only using depth data (i.e., no color term).

Figure 27.8: Samba, Squat: Reconstructions of synthetic multi-view input (8
depth cameras). Input (top row), our reconstruction (middle row), error (bottom
row) with red=30mm. The right column of Squat shows the result at the end of
the animation after four squats. Ghost: also reconstructed from synthetic multi-
view input (8 cameras). Top row: input, bottomrow: reconstruction. KinectHand
& Face: Three frames of a sequences reconstruction using a single Kinect sensor.
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tion, aer which we can perform surface fitting within our presented fitting
pipeline, which is independent of the number of cameras.

Finally, we also illustrate results of our method using a regular Kinect cam-
era (see also Figure 27.8). Note that while our method produces far higher
quality results with our stereo setup (for close ranges), the Kinect results
could still be used in interactive applications, where quality is perhaps a
secondary requirement, or where larger distance reconstruction is desired.
is provides the exciting possibility of building both new multi-camera
systems for performance capture using our method, as well as the possibil-
ity to use consumer depth cameras for certain interactive scenarios.
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Limitations

Even though we demonstrated one of the first methods for real-time non-
rigid reconstruction from a single view, this problem is still ill-posed. In
particular, the restriction to a single view leads to large occlusions result-
ing in missed correspondences. At each time step, typically less than half
of the tracked object is visible [LAGP09], and the behavior of unobserved
regions has to be inferred through regularization constraints. Offline meth-
ods tackle this problem with sophisticated correspondence finding mecha-
nisms coupled with a slow relaxation of the model's rigidity during the op-
timization process in order to avoid local minima in the energy landscape.
Given the tight real-time constraint (33ms/frame) of our approach, we rely
on temporal coherence of the RGB-D input stream making the processing
at 30Hz a necessity. If the frame rate is too low, or frame-to-framemotion is
too large, ourmethodmight lose tracking. Similar problemsmay be caused
by occluded regions, sparse/noisy input data, or a violation of the topologi-
cal prior. Offline methods, e.g., [LSP08, LAGP09, BHB∗11], fail in similar
cases as ours; however, they are more stable due to a larger time budget
that allows for more elaborate strategies, such as global optimization, re-
meshing of the deformation template, or anchor frames. In the following,

Figure 28.1: Limitations. Left: tracking instability due to sparse input leading to a
slight misalignment of the paper. Right: tracking of the puppet's arm fails due to
large and fast motion. However, our method recovers at the end of the sequence.
Note, that our approach is less stable in these sequences, compared to the ones
shown in Figure 27.5, since no color data is used.
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we address specific failure cases in more detail and give ideas on how to
improve in these situations.

Topological Changes Most template-based methods, no matter if they
are online or offline, share our inability to robustly and efficiently handle
topological changes. Only a fewmethods handle such situations [WAO∗09],
but at computation times that are far from real-time performance. A seman-
tically incorrect prior counteracts the actual deformation (e.g., opening the
mouth) which inevitably leads to surface sliding. While one could imagine
the template to be modified at runtime, it would cause severe optimization
instabilities and add significant computational complexity, which is (cur-
rently) infeasible in real-time. Similar problems occur if object parts not
represented in the template are revealed during surface tracking (e.g., teeth).
In scenarios where the topological assumption is satisfied (e.g., hand, boxer,
teddy, ball), our method allows for robust tracking without surface sliding
(see Figure 27.2).

Sparse Input andOcclusions Sparse input data and occlusions are inher-
ent problems of a single-view camera setup. is causes missing correspon-
dences, and thus increases the importance of regularization constraints. In
these regions, there is no guarantee that deformations conform to the real-
world, since we do not consider material or statistical shape priors. Meth-
ods focusing on a single domain, such as faces [WBLP11, LYYB13], are
more robust towards occlusions since they have less degrees of freedom;
however, they are less general and require a significant amount of training
data. If our method misses large deformations due to occlusions, the tem-
poral coherence assumption is violated once these regions become visible.
is might lead to tracking instabilities or slow convergence. Given the
tight real-time constraint, we can only afford searching correspondences
on each level of the hierarchical solver independently. In theory, we would
always like to consider alignment at the highest resolution, even when pro-
cessing lower hierarchy levels; however, this comes at additional costs. An-
other problem of our vertex-to-input correspondence search is the possibil-
ity of undersampling the input depth data, which might lead to misalign-
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ments; see Figure 28.1 (le). Ideally, one would prefer explaining all input
data instead. Again, this is currently infeasible due to computational limi-
tations.

Fast and Large Deformation A typical strategy to deal with fast and
large deformations, is to incrementally relax the model rigidity in order to
avoid local minima in the energy landscape. erefore, offline approaches
spend significant effort on slowly relaxing regularization constraints using
many iterations. In our real-time scenario, we can only handle a limited
amount of frame-to-frame deformation. In order to process reasonably fast
motion, we enforce high temporal coherence leveraging our 30Hz input
RGB-D stream. If the temporal coherence assumption is violated, tracking
might fail; e.g., seeFigure 28.1 (right). However, note that our method can
recover in most cases. In the future, we also expect RGB-D cameras to have
higher frame rates, thus making faster motion possible.
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Conclusions

We have introduced what we believe to be the first `general purpose' non-
rigid reconstruction system that provides real-time performance, several
orders of magnitude faster than general methods, without using a specific
`baked in' kinematic or shape model. Instead our system allows users to ac-
quire a template online, and use it for live non-rigid reconstructions. Our
system is simple to use and self-contained, with a single lightweight stereo
camera setup, moving closer to commodity or consumer use. Additionally,
in terms of reconstructed geometric detail, ourmethod also narrows the gap
between offline and online methods. Our system attempts to hit a `sweet
spot' between methods that can reconstruct general scenes, and techniques
that rely on a stronger shape prior (e.g., a blendshape face model or body
or hand skeleton), which are beginning to demonstrate real-time perfor-
mance. As shown in the results section, the simplicity of our method and
its real-time performance does not significantly compromise the overall re-
construction quality. Our work brings us a step closer to high-quality real-
time performance capture systems for consumer scenarios including gam-
ing, home and semi-professional movie production, and human-computer
interaction.
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Summary and Outlook

In this dissertation, we have presentedmethods and algorithms for the real-
time acquisition, deformation and tracking of static and physically deform-
ing scenes. We have shown that low-quality depth maps of commodity
RGB-D sensors can be used to obtain high-quality super-resolution recon-
structions of large-scale environments. For specific object classes, i.e. hu-
man heads, statistical information can be exploited to further increase the
reconstruction quality by jointly optimizing for the geometry, surface albedo
and illumination parameters. New variations of the three-dimensional re-
constructions, which can consist of millions of polygons, can be interac-
tively and intuitively created using the presented handle based deformation
metaphor. is allows basically everybody to create detailed digital models
that can be used as props in virtual reality applications, video games and
movie productions. In addition, we have shown that the non-rigid motion
of arbitrary physically deforming objects can be tracked at real-time rates
using a general deformation framework. e obtained dense set of acquired
temporal correspondences can be leveraged to analyze an object's motion
and seamlessly re-target it to a variety of different objects. is will allow
users to easily animate digital models and breath life into virtual charac-
ters using virtual puppetry. e captured reconstructions and animations
can be shared digitally with friends or can be used in teleconferencing ap-
plications. Currently, our non-rigid tracking method is based on a single
custom RGB-D camera that outperforms consumer grade devices in terms
of accuracy.

In the future, we expect commodity RGB-D sensors to make a leap for-
ward in accuracy and resolution of the captured color and depth streams.
is will enable the broad public to leverage all of the presented techniques
in their everyday lifes and will further increase the demand for fast algo-
rithms and efficient techniques that can handle such a high amount of cap-
tured RGB-D data at real-time rates. We strongly believe, that the availabil-
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ity of higher quality sensors on the mass market will not only revolution-
ize the field of 3D reconstruction, but will have a huge impact in general
and shape many aspects of our everyday lifes. With virtual reality applica-
tions such as virtual mirrors and virtual try-on, i.e. trying on new cloth will
be a completely new experience. Digital measurements of the customer's
anatomy will enable the custom design and fabrication of perfectly fitting
cloth. Teleconferencing and virtual puppetry will create completely new in-
teraction and communication experiences between people. In addition, we
will be able to track and analyze facial motions and control arbitrary devices
through simple movements and gestures in real-time.

We are looking forward to a bright future, full of new opportunities that will
redefine the way we think about digital content.
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Echtzeit Rekonstruktion von statischen
und dynamischen Szenen





Zusammenfassung

Seit der Veröffentlichung der Microso Xbox 360 Kinect ist ein echtzeitfä-
higer und erschwinglicher RGB-D Sensor auf demMassenmarkt verfügbar.
Dadurch sind viele der Verfahren, die vorher nur Technik-Verrückten und
Forschern zur Verfügung standen, jetzt auch für eine breite Masse im All-
tag direkt einsetzbar. Anwendungsgebiete für diese Technik erstrecken sich
von der Erstellung detailgetreuer dreidimensionaler Modelle bis hin zur
Verfolgung undAnalyse von komplexen Bewegungsabläufen. Diese Verfah-
ren stellen auch die Grundlage für Anwendungen der virtuellen Realität,
wie zum Beispiel virtuellen Spiegeln, dar und sind sowohl die Basis für die
Gestensteuerung als auch die Analyse von Bewegungsabläufen. Um die Be-
dienungsfreundlichkeit solcher Anwendungen zu erhöhen ist eine intuitive
Steuerung und interaktive Darstellung der berechneten Ergebnisse zwin-
gend erforderlich. In dieser Dissertation werden neue Techniken und Ver-
fahren vorgestellt, die es erlauben dreidimensionale Beschreibungen von
Objekten mittels einer handelsüblichen RGB-D Kamera zu erstellen, die-
se manuell nachzubearbeiten und die Bewegungen von realen Objekten in
Echtzeit zu verfolgen. Das erste Verfahren verwendet statistisches Wissen
um qualitativ hochwertige Rekonstruktionen des menschlichen Kopfes auf
Basis von verrauschten Daten einer handelsüblichen RGB-D Kamera zu er-
stellen.Darauf auauendwird gezeigt, dass durch eine gekoppelteOptimie-
rung von Form-, Farb- und Beleuchtungs-Parametern der Detailgrad der
erstellten Rekonstruktionen weiter erhöht werden kann. Danach wird eine
bewegte RGB-DKamera verwendet um potentiell unbegrenzt große Areale
in Echtzeit zu vermessen. Um die Skalierbarkeit des Verfahrens zu garantie-
ren kommt eine neue dünnbesetzte Beschreibung der rekonstruierten Geo-
metrie zum Einsatz. Zusätzlich stellen wir eine Technik vor, um die erstell-
ten Rekonstruktionen, die aus Millionen von Polygonen bestehen können,
in einem interaktiven Schritt nachzubearbeiten. Abschließendwird einVer-
fahren beschrieben, welches die Bewegungen von realen Objekten mittels
einer einzelnen RGB-D Kamera in Echtzeit verfolgen kann.
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