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Abstract
Meshless radiosity is a radiosity method that is based on a point-based hierarchical discretization of the scene. This
better decouples the runtime complexity from the geometric complexity of the scene and allows for an adaptive
high-quality simulation of the diffuse global light transport. In this paper, we analyze the bottlenecks of this
approach and examine the possibilities for an efficient and parallel implementation of this paradigm on the GPU.
We show how by modifying the hierarchical data structures and the computation of the transport operator, a highly
efficient GPU-based solution can be achieved which is by orders of magnitude faster and allows to compute high-
quality global illumination solutions within seconds.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Radiosity

1. Introduction

Simulating the global light transport in complex environ-
ments is a computationally expensive task. Especially the
indirect diffuse illumination, which has a huge impact on
the realism of the generated images, is hard to simulate. The
classical solution approach is to use radiosity-based meth-
ods. These are instances of the finite element method and
are based on a mesh-based discretization of the scene. Mesh-
less radiosity [LKSA,LZT∗08] decouples the light transport
from the geometric complexity of the scene by using a hier-
archical and point-based basis. The computed solutions are
inherently smooth and do not require post-processing. In this
paper, we show how by modifying the underlying data struc-
tures and the computation process, we can shift the compu-
tations to a GPU and well exploit the GPU’s computational
horsepower. The core idea is to use an approximate hierar-
chy evaluation scheme based on a hierarchy which stores
absolute values on all levels, in order to get rid of the ex-
pensive basis function evaluations in the computation of the
transport operator. As a result, we can compute high-quality
global illumination solutions within a few seconds.

In the remainder, we discuss the following: Section 2
gives a short history and introduction to radiosity-based
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methods. In Section 3, we reiterate the basic concepts of the
meshless radiosity method. We discuss the existing bottle-
necks and analyse the parallelism in the light transport step.
Our GPU implementation is discussed in Section 4. The ap-
proximate evaluation of the incident illumination and how
to efficently propagate illumination down the modified hi-
erarchy is discussed in Section 5. Timings and results are
presented in Section 6. A summary and an outlook is given
in Section 7.

2. Related Work

The classical radiosity method [GTGB84] was presented in
1984. The authors construct a discretized representation of
the scene by subdividing it into a set of patches. By using
a constant basis function per patch, the global illumination
solution is restricted to a finite dimensional subspace. To de-
scribe the discrete energy transport, form factors are intro-
duced to measure the fraction of energy which is transported
between patches. This allows to state the energy distribution
equilibrium as the solution of a system of linear equations.
The main bottleneck of this approach is the computation of
the form factor matrix, because of the quadratic number of
form factors.

In 1991, the hierarchical radiosity method [HS91] has
been introduced. By using an adaptive refinement approach,
the authors can solve the light transport up to a user-specified
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precision. The light transport is based on a hierarchical
patch-based representation of the scene. The coarsest hier-
archy level is given by the primitives of the scene and finer
levels are obtained by recursive splitting. This makes the
number of required form factor computations linear in the
number of finest level basis functions. Because the number
of form factors still quadratically depends on the coarsest
level, the scene complexity is the limiting factor.

To eliminate this dependence, clustering based algorithms
have been introduced. These approaches can be classified in
two categories. Volume clustering methods [SAG94, Sil95,
GH96] build a hierarchy of volume clusters on the prim-
itives of the scene. Such a cluster abstracts from the con-
tained primitives. The second class are face clustering meth-
ods [WHG99]. Face clusters are groups of primitives which
partition an object. By using an automatically generated
multi-resolution hierarchy of such clusters, the energy trans-
port between two sets of primitives can be approximated us-
ing clusters if the introduced error is small. Clusters are con-
structed on top of the geometry which allows to decouple
the runtime complexity from this parameter. This allows to
process scenes with higher complexity.

Besides these methods, there are numerous other ap-
proaches. The integration of glossy transport into the ra-
diosity framework has been proposed and discussed in vari-
ous papers [DS95, RT90]. In [TM93, Zat93], the authors in-
vestigate the use of higher order basis functions. By con-
struction, those generate smoother solutions. The authors
of [GSCH93] propose to use a wavelet basis, this directly
leads to a hierarchical formulation of the radiosity problem.

3. Meshless Radiosity

The meshless radiosity method [LKSA, LZT∗08] uses the
so-called meshless hierarchy to discretize the radiosity equa-
tion. Because of its point-based and hierarchical nature, the
resolution of the light transport computations can be locally
adapted to eliminate costly computations. By decoupling
the runtime complexity from the geometric complexity of
the scene, the meshless radiosity method can much better
handle detailed scenes with small triangles – a setup that
typically generates problems with the mesh-based radiosity
solvers described in Section 2. Typically, these approaches
require a final gathering step to remove artifacts, because
the computed solutions inherently contain the structure of
the discretization scheme. In contrast, the meshless radiosity
method generates smooth solutions which allow for a direct
visualization.

A meshless hierarchy consisting of m levels represents the
incident illumination at a point p in the following way:

Fm(p) =
m−1

∑
l=0

Nl

∑
j=0

α
l
j ·Bl

j(p).

Thereby, the l-th level is given by Nl basis functions Bl
j . The

basis functions have compact support and each hierarchy
level has to cover the entire scene. Normally, a few hundred
basis functions are used on the coarsest level. On finer dis-
cretization levels a steadily increasing number of basis func-
tions is used. The coefficients α

l
j of the basis function expan-

sion encode the illumination. The evaluation point p = (x,n)
is specified by its position x and the associated surface nor-
mal n.

The basis functions are normalized versions of weight
functions wl

j which ramp the influence of the associated co-
efficient smoothly from one to zero, depending on the dis-
tance to the evaluation point:

Bl
j(p) =

wl
j(p)

∑
Nl
i=0 wl

i(p)
.

Distance to the evaluation point is measured considering
both the Euclidean distance as well as the difference in
the surface normal orientation. To allow a better approxi-
mation on finer hierarchy levels, the support of the basis
functions is successively reduced. A detailed discussion of
the used weight functions can be found in the original pa-
pers [LKSA, LZT∗08].

One important design decision in the original work is to
store absolute values only at the coarsest hierarchy level
and to store differences on finer levels. Because each hier-
archy level uses Shepard Approximation [She68], this leads
to a Multi-level Shepard Approximation scheme. The coef-
ficients representing the direct illumination in the scene can
be computed using the directly incident illumination f l

j at
the basis functions:

α
l
j =

{
f l

j l = 0
f l

j −Fl−1(pl
j) l > 0

.

To compute the hierarchy, we use the approach described in
the original papers [LKSA, LZT∗08], which involves sam-
pling the scene using ray tracing and generating multiple
Poisson Disk distributions of increasing density by a Dart
Throwing [Coo86] algorithm. Adjacent hierarchy level are
connected by a father-child relation, where a node c of level
l +1 is a child of a node p at level l, if the basis function as-
sociated with p at the center of c is non-zero. Figure 1 shows
how the distribution of the basis functions looks like in the
Crytek Sponza scene.

The radiosity equation is discretized using a reformulation
in terms of irradiance, because irradiance is the smoother
function [GSH94]. This allows to state the global illumina-
tion ein as the solution of the following equation:

ein = ed +Tein.

Thereby, ed represents the directly incoming irradiance. By
recursively expanding the given equation, one obtains the
following form:

ein = ed +Ted +T2ed + . . .
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Figure 1: Distribution of the basis functions on the six com-
puted hierarchy levels in the Crytek Sponza scene.

To obtain an approximate global illumination problem,
this equation is evaluated up to a finite number of bounces.
The transport operator T can be evaluated in two different
ways: By computing a set of transport links which can be
reused in each bounce [LZT∗08], or by directly transport-
ing the “un-shot”-energy in each bounce [LKSA]. The sec-
ond approach has the lower memory footprint, but the higher
runtime. By precomputing transport links, the global illumi-
nation solution can be updated at interactive rates for static
scenes if the direct illumination is changing [LZT∗08]. De-
spite this fact, we focus on the second approach [LKSA],
because it will allows us to apply rigid transformations to
objects, modifiy the direct illumination and recompute a new
global illumination solution within seconds.

In both approaches, gathering integrals are evaluated on
an adaptive basis using an oracle which decides when to re-
fine the transport. Each gathering integral is computed using
Monte Carlo integration.

An interactive visualization of the computed global illu-
mination solution can be obtained using basis function splat-
ting. Care has to be taken that splats are not clipped away
as long as the corresponding basis functions have influence
on visible surface locations [LKSA]. The different hierar-
chy levels have to be splatted separately to allow for a cor-
rect normalization of the weight functions. Because this ap-
proach introduces a high amount of overdraw, Lehtinen et
al. advice to compute a flat representation of the hierarchy
before rendering.

4. Meshless Radiosity on the GPU

The most compute intensive part of the meshless radiosity
method is the computation of the light transport operator
T. Despite its hierarchical nature, the computation of all re-
quired gathering integrals can take several minutes. In this
section, we describe a GPU-based implementation of the
variant which directly transports the “un-shot”-energy. This

Figure 2: Parallel computation of the transport operator:
All equally colored gathering integrals can be evaluated in
parallel. Gray integrals are not processed because of the
adaptive refinement.

implementation reduces the computation time from minutes
to seconds. At the end of this section, we will analyze the
bottlenecks of this implementation. Based on this analy-
sis, we present a GPU-optimized version in Section 5, that
makes even faster simulation possible.

All following implementations use the NVIDIA® Op-
tiX™ ray tracing engine [NVI10b, PBD∗10] and the
NVIDIA® CUDA™ architecture [NVI10a, NVI10c] to
leverage the GPU’s computational power.

4.1. Parallelization

Each gathering integral in the computation of the transport
operator is solved using the Monte Carlo Integration method.
To obtain accurate results a high number of gathering rays is
required (we decided to use 512 rays per integral). At each
hit-point, the incoming “un-shot”-energy has to be recon-
structed using the hierarchy. This requires to find and evalu-
ate all influencing basis functions on all hierarchy levels.

The adaptive refinement starts by computing gathering in-
tegrals at each of the coarsest level basis functions. Next,
an oracle is used to decide if these results have to be fur-
ther refined. All these computations are inherently parallel
allowing for a parallel implementation, because the compu-
tations of gathering integrals on the same hierarchy level do
not depend on each other. We use a breadth-first traversal of
the hierarchy and compute all gathering integrals on com-
mon levels in parallel. A parallelization across multiple lev-
els is not possible, because the refinement oracle introduces
a dependency to the previous level. Figure 2 illustrates the
potential parallelism using a small artificial example.

Besides this per-level parallelism, all gathering rays in the
Monte Carlo integration are independent and can be traced
in parallel. Additionally, all further computations for the hit-
point are independent and can be processed in parallel.

4.2. Implementation Details

Although the computation of the transport operator con-
sists of many independent parallel tasks, the interplay has to
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Figure 3: GPU-based evaluation of the gathering integrals

be managed well to achieve good performance. Before the
transport operator can be computed in parallel, all required
data structures have to be transferred to the GPU’s device
memory. This includes the basis functions and data struc-
tures for locating them. A GPU-based implementation of a
median split kd-tree which stores each node in a compressed
format requiring only 8 Bytes [Wal04] per node is used for
range searching. We recursively split until each leaf contains
exactly one basis function.

Thereafter, we compute the gathering integrals using the
pipeline in Figure 3. In the Hemisphere Sampling stage,
we compute all gathering rays in parallel using Halton se-
quences [WLH97]. As in the original work, we also ap-
ply a random rotation around the normal for each gather-
ing integral to eliminate artifacts. The resulting rays are then
cast in the Ray Casting stage to compute the hit-points with
the scene and the associated surface normals. Both of these
steps are implemented using OptiX. The Irradiance Recon-
struction stage, reconstructs the “un-shot”-energy at the hit-
points by evaluating the basis function expansion using the
CUDA architecture. We store the per hit-point traversal stack
of the used kd-tree in local device memory, as suggested
by [ZHWG08]. Influencing basis functions are directly eval-
uated and used to compute the incident irradiance in the
current bounce. Thereafter, we transfer the computed data
to the CPU and compute the Monte Carlo estimates in the
Monte Carlo Integration stage. At the moment we use a
single-threaded implementation for this processing step, but
it could also be mapped to the GPU.

On the coarsest hierarchy level, the Monte Carlo estimates
can be directly used to update the coefficients of the basis
function expansion. Because finer levels only store deltas,
the incident irradiance already gathered at the coarser lev-
els has to be subtracted. We compute this data using the
newly computed coefficients and the Irradiance Reconstruc-
tion stage of the presented pipeline. As input the positions
and surface normals of the basis functions have to be used.

This means that the coefficients representing the currently
gathered illumination have to be kept on the GPU and have
to be updated each time a hierarchy level has been com-
pletely processed. Ideally, we would like to trace all gather-
ing rays and perform all subsequent range searches in paral-
lel. In practice, this is not possible because of hardware and
memory constraints. Therefore, we handle 1000 gathering
integrals in parallel which leads to 512k traced rays and an
equal number of evaluations of the basis function expansion.

4.3. Problems

The meshless hierarchy represents the illumination in a delta
encoded way. This allows for an adaptive computation of
the light transport. But this type of storage format also has a
negative effect on the performance:

• The computation of the light transport operator has to con-
sider multiple hierarchy levels. This leads to many range
searches and basis function evaluations. In addition, in a
GPU-based implementation all basis functions and asso-
ciated data structures have to be kept in device memory.

• To obtain the new delta coefficients, the incident illumi-
nation which is already represented by the coarser levels
has to be subtracted. This step is also required when con-
structing the hierarchy.

• The hierarchy has to be flattened to allow for an efficient
visualization.

5. Modified Hierarchy

In the following section, we redefine the meshless hierarchy
allowing us to eliminate the described drawbacks and to sim-
plify the light transport. We definitely want to maintain the
adaptive nature of the original algorithm, because it signif-
icantly reduces the number of required gathering integrals.
Based on the above observation, we decided to store absolute
values on all hierarchy levels. This means, that our modified
version of the hierarchy consists of multiple absolute Shep-
ard Approximations of the illumination in the scene.

Therefore, the hierarchy represents not only one basis
function expansion but multiple ones with varying level of
detail. Each of the hierarchy levels can be interpreted as a
flattened version of the original hierarchy up to that level.
Now, only the selected sender level has to be kept in the
GPU’s device memory to compute the incident irradiance at
the basis functions. In the original approach the whole hier-
archy up to a selected sender level had to be used. Because
we store absolute values on each level, we do no longer have
to subtract the energy transported to the parents. This holds
for the construction of the hierarchy as well as for the com-
putation of the transport operator, therefore speeding up the
computation time of both subtasks. A nice side-effect is that
each hierarchy level is already a flat representation of the
computed global illumination solution. Therefore, an effi-
cient visualization of a selected level is directly possible.
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Figure 4: Pulling energy down the hierarchy to keep it con-
sistent

This modification of the hierarchy is not for free, because
it has an impact on the adaptive light transport algorithm and
on the quality of the approximation. Both approaches lead to
different basis function expansions and therefore have differ-
ent approximation properties. We will discuss this in Section
6. To keep the absolute coefficients on all hierarchy levels
consistent, we have to propagate the gathered illumination
through the hierarchy, which means, that we have to pull the
illumination gathered on the coarser levels down the hier-
archy. To allow for an efficient implementation of this op-
eration, we store the influence of the parent basis functions
on their children in the parent relation. For a parent basis
function Bl

i and a corresponding child Bl+1
j , the influence of

the parent on the child is given by Bl
i(pl+1

j ). Because the
basis functions on a common hierarchy level are a partition
of unity, the illumination at a child can be approximated as a
linear combination of the incident illumination at its parents.
This approach is illustrated in Figure 4. The used weights are
a byproduct of the hierarchy construction, therefore precom-
puting them requires no additional computation time. Now,
the refinement oracle can be based on the difference between
the pulled down energy and the gathered illumination at the
corresponding basis function.

5.1. Approximate Reconstruction

To further improve performance, we apply an approximate
reconstruction scheme which speeds up the computation of
the light transport. Our approach is similar to the one used
by Christensen [Chr99] to speed up photon mapping. The
basic idea is to reconstruct the illumination only at a fixed
number of positions in the scene and use the illumination at
the nearest photon as an approximation. Here, we use the ba-
sis function centers of a sender hierarchy level as evaluation
points. Because we have eliminated the delta coefficients,
the coefficients can be directly used as an approximation of
the “un-shot”-energy. Since many of the hit-points computed
during the light transport are spatially close, similar compu-
tations in the evaluations of the basis function expansion can
be saved.

Instead of using the illumination at the nearest center, we
can make a further approximation by using the basis func-

tion in the first traversed leaf of the used median split kd-
tree. We reject basis function centers which have a strongly
differing normal compared to the actual hit-point. Because
the functions on the used sender hierarchy level are equally
distributed and densely cover the surface of the scene, the
introduced error is evenly spread and cancels out as in the
photon mapping context. Such an optimization is not possi-
ble using the original hierarchy, because the basis functions
on the first hierarchy levels are too far apart.

6. Results

We have tested the GPU-based implementation and the pro-
posed acceleration techniques, using different test scenes
and illumination conditions. The properties of the scenes and
the used parameters can be found in Table 1. All renderings
have been computed using the modified hierarchy and the
approximate reconstruction based on kd-tree leafs. The ren-
derings are gamma corrected using a gamma of 2.2, which
even emphasizes artifacts. We show our results for the com-
puted direct, indirect, and total illumination in Figure 6. For
the Cornell Box, we used a spot light source. As stress test,
we placed the Happy Buddha mesh in the Cornell Box, this
scene consists of many small triangles and is illuminated us-
ing a spot light. To test our approach in a complex and tex-
tured environment, we have used the Crytek Sponza scene
illuminated by a directional light source.

To visualize the computed global illumination solution,
we opted to use the hybrid rendering approach proposed
by [LKSA,LZT∗08]. This means that the direct illumination
is rendered using rasterization and the indirect illumination
is splatted. We do this, because our modified hierarchy can
not handle direct illumination as well as the original hier-
archical approach. The illumination looks smoother, similar
to the effect introduced by flattening the hierarchy for ef-
ficient visualization. As starting point for the computation
of the indirect diffuse illumination our representation seems
to be sufficient. Because the indirect diffuse illumination is
an inherently smooth function, the modified hierarchy is a
suitable representation for this kind of illumination. For an
increasing number of basis functions, our as well as the orig-
inal approach should converge to the same solution.

Because we compute a meshless hierarchy per scene ob-
ject, we can rigidly transform them without having to re-
compute the point hierarchy. We transform the hit-points to
the objects local coordinate frames to evaluate the corre-
sponding basis function expansion. After a modification of
the scene, the light transport has to be computed again. This
includes sampling the direct illumination and computing the
subsequent light bounces. The GPU-based implementation
allows to compute a global illumination solution in a rea-
sonable time frame, this allows for a modify-review editing
cycle. Figure 5 shows the influence of different object posi-
tions on the computed global illumination solution.

Table 2 shows timings for three different version of the
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Figure 5: Influence of object positions on the computed
global illumination solution

meshless radiosity algorithm. We have measured the perfor-
mance of the original approach, the direct GPU implementa-
tion and the new hierarchy in combination with the approxi-
mate reconstruction (based on kd-tree leafs) for the three test
scenes. The speedup is given relative to our implementation
of the original method. All timings have been measured on
an Intel® Core™ i7 860 CPU with 6GB RAM equipped with
a NVIDIA® GeForce® GTX 480 graphics card with 1.5GB
RAM.

For the timings, we performed the ray tracing computa-
tions in all approaches using OptiX to ensure comparable
results. The light transport has been stopped after the first
six bounces. We give the required time for the first three
bounces, the number of totally computed gathering integrals
and the computation time for the six bounce global illumina-
tion solution. Due to the adaptive refinement, the number of
computed gathering integrals is much smaller than the total
number of possible integrals. In average, a relative speedup
of about 26.1x is purely achieved by using the GPU with-
out introducing any simplifications to the algorithm. The ad-
ditional speedup achieved by using the new hierarchy and
the further optimizations leads to even smaller computation
times.

7. Conclusion and Future Work

The meshless radiosity method is based on a point-based dis-
cretization of the scene. This decouples its runtime complex-
ity from the primitive count. Therefore, this approach is well
suited to compute the light transport in scenes consisting of
many small primitives.

Scene

Cornell Happy Sponza

Triangles 36 1.06M 279k
Hierarchy Levels 6 6 6
Sender Levels 3 3 3
Sender Level 4 4 4
Func. Coarsest Level 226 582 1438
Func. Finest Level 167k 288k 356k

Table 1: Scenes properties and used parameters

We have analyzed the computation of the light transport
operator and have found that this task is inherently paral-
lel. This parallelism is exploited using an implementation
on the GPU. A modification of the point hierarchy simpli-
fies the transport algorithm even further and allows for an
approximate evaluation scheme. In the future, we would like
to completely implement the described pipeline on the GPU,
this will lead to further runtime improvements.
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