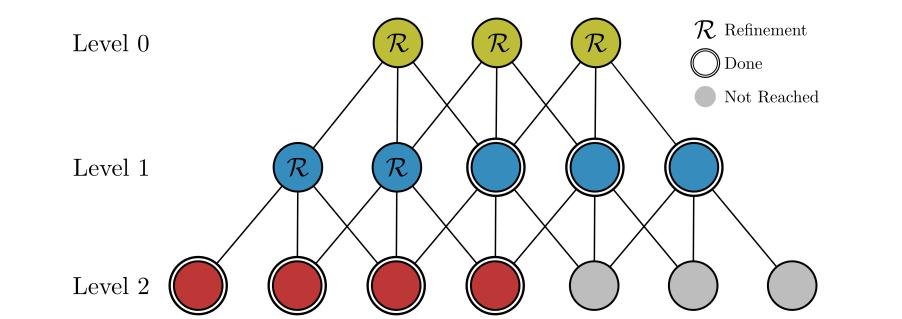
Michael.Zollhoefer, Marc.Stamminger}@informatik.uni-erlangen.de



Abstract

Meshless radiosity [1, 2] is a radiosity method that is based on a point-based and hierarchical discretization of the scene. This better decouples the runtime complexity from the geometric complexity of the scene and allows for an adaptive high-quality simulation of the diffuse global light transport. In this paper, we analyze the bottlenecks of this approach and examine the possibilities for an efficient and parallel implementation of this paradigm on the GPU. We show how by modifying the hierarchical data structures and the computation of the transport operator a highly officient CPI has a colution

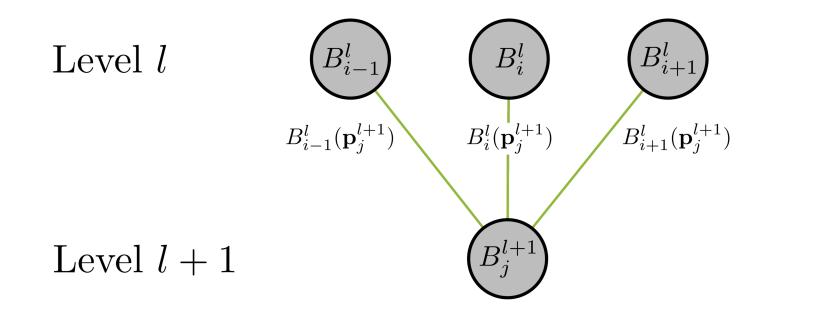
Parallelization of the Transport


The adaptive computation of the transport operator starts by computing gathering integrals at the coarsest level basis functions. Thereafter, an oracle decides if further refinement is required.

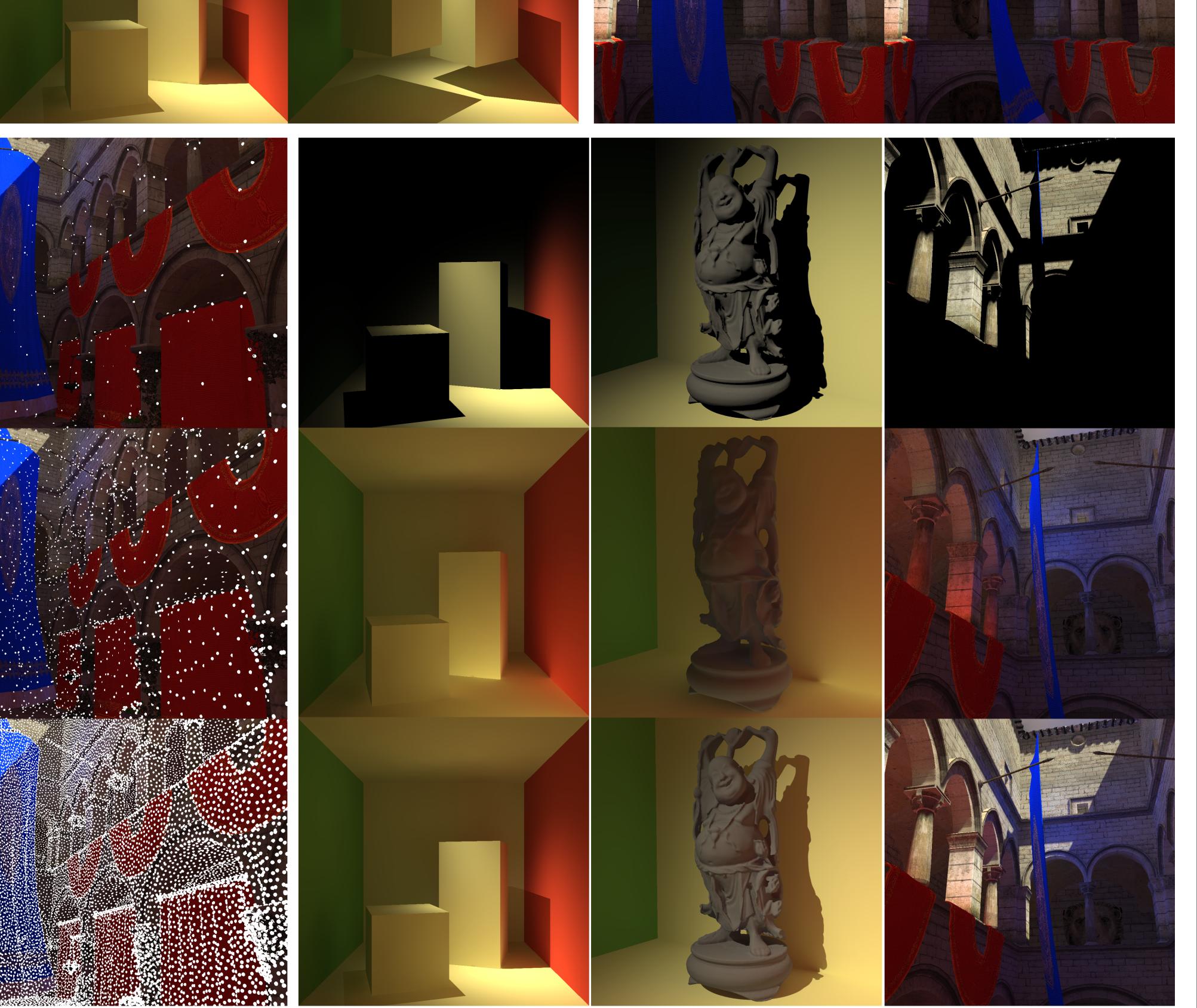
We use a breadth-first traversal of the hierarchy and compute all gathering integrals on common

Implementation of the Transport

All gathering rays in the Monte Carlo integration step and all per hit-point computations are independent.


operator, a highly efficient GPU-based solution can be achieved which is by orders of magni- tude faster and allows to compute high-quality global illumination solutions within seconds.		Monte Carlo Estimate								
Meshless Hierarchy	Results									
A meshless hierarchy [1, 2] consisting of <i>m</i> levels allows to represent illumination at a point p		CPU Orig.		GPU Orig.			GPU Ours			
in the following way:		Cornell	Happy	Sponza	Cornell	Happy	Sponza	Cornell	Нарру	Sponza
	1. Bounce	18.8s	8m 19s	11m 11s	1.0s	14.3s	24.4s	0.5s	3.3s	3.5s
$m-1 N_l$	2. Bounce	8.7s	2m 33s	37.5s	0.5s	4.0s	1.5s	0.2s	0.9s	0.4s
$F_m(\mathbf{p}) = \sum \sum \alpha_j^l \cdot B_j^l(\mathbf{p}).$	3. Bounce	2.7s	39.0s	22.6s	0.2s	1.3s	0.9s	0.1s	0.4s	0.3s
l = 0 j = 0	Integrals	14k	66k	47k	14k	66k	47k	15k	66k	46k
Thereby, the <i>l</i> -th level is given by N_l basis func-	Total Time	34.6s	12m 1s	13m 19s	2.1s	20.7s	29.6s	1.1s	5.3s	5.1s
tions B_i^l and the coefficients α_i^l encode the illu-	Speedup	1x	1x	1x	16.5x	34.8x	27.0x	31.5x	136.0x	157.7x
mination. Its point-based and hierarchical na-										
ture allows to decouple the runtime complexity										
from the geometric complexity of the scene and										
to locally adapted the resolution of the compu-								MAME		SAAL
tations. The important design decision in the										

tations. The important design decision in the original work is to store absolute values on the


coarsest hierarchy level and to use delta coefficients on all other levels.

Modified Meshless Hierarchy

We store absolute values on all hierarchy levels. Therefore, the modified version of the hierarchy encapsulates multiple absolute Shepard Approximations of the illumination. This allows to eliminate the expansive computation of the energy transported to the parents which has to be subtracted in the original approach. To keep the absolute coefficients consistent, we propagate the gathered illumination through the hierarch.

In addition, we apply an approximate reconstruction scheme which speeds up the computation of the light transport. This is similar to the approach used by Christensen [3] to speed up photon mapping.

References

- [1] LEHTINEN J., KONTKANEN M. Z. J., SILLION E. T. F. X., AILA T.: Technical Report TML-B7, Publications in Telecommunications Software and Multimedia, Helsinki University of Technology, Meshless Finite Elements for Hierarchical Global Illumination.
- [2] LEHTINEN J., ZWICKER M., TURQUIN E., KONTKANEN J., DURAND F., SILLION F. X., AILA T.: A meshless hierarchical representation for light transport. ACM Trans. *Graph.* 27, 3 (2008), 1–9.
- [3] CHRISTENSEN P. H.: Faster photon map global illumination. *Journal of Graphics Tools* 4 (1999), 1–10.

Acknowledgements

We thank Cornell University (Cornell Box), Stanford University (Happy Buddha) and Crytek (Crytek Sponza) for making their models publicly available. This work was partly funded by the German Research Foundation (DFG) under grant STA-662/3-1.