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Abstract. We introduce the first dense neural non-rigid structure from
motion (N-NRSfM) approach, which can be trained end-to-end in an
unsupervised manner from 2D point tracks. Compared to the compet-
ing methods, our combination of loss functions is fully-differentiable and
can be readily integrated into deep-learning systems. We formulate the
deformation model by an auto-decoder and impose subspace constraints
on the recovered latent space function in a frequency domain. Thanks to
the state recurrence cue, we classify the reconstructed non-rigid surfaces
based on their similarity and recover the period of the input sequence.
Our N-NRSfM approach achieves competitive accuracy on widely-used
benchmark sequences and high visual quality on various real videos.
Apart from being a standalone technique, our method enables multiple
applications including shape compression, completion and interpolation,
among others. Combined with an encoder trained directly on 2D images,
we perform scenario-specific monocular 3D shape reconstruction at in-
teractive frame rates. To facilitate the reproducibility of the results and
boost the new research direction, we open-source our code and provide
trained models for research purposes1.

Keywords: Neural non-rigid structure from motion, sequence period
detection, latent space constraints, deformation auto-decoder.

1 Introduction

Non-Rigid Structure from Motion (NRSfM) reconstructs non-rigid surfaces and
camera poses from monocular image sequences using multi-frame 2D correspon-
dences calculated across the input views. It relies on motion and deformation
cues as well as weak prior assumptions, and is object-class-independent in con-
trast to monocular 3D reconstruction methods which make use of parametric
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Fig. 1: Neural non-rigid structure from motion (N-NRSfM). Our approach
reconstructs monocular image sequences in 3D from dense flow fields (shown using the
Middlebury optical flow scheme [9]). In contrast to all other methods, we represent the
deformation model with a neural auto-decoder f� which decodes latent variables zt
into 3D shapes (a/). This brings a higher expressivity and flexibility which results in
state-of-the-art results and new applications such as shape completion, denoising and
interpolation, as well as direct monocular non-rigid 3D reconstruction (b/).

models [59]. Dense NRSfM has achieved remarkable progress during the last
several years [1,8,19,37,51]. While the accuracy of dense NRSfM has been re-
cently only marginally improved, learning-based direct methods for monocular
rigid and non-rigid 3D reconstruction have become an active research area in
computer vision [13,33,47,54,66].

Motivated by these advances, we make the first step towards learning-based
dense NRSfM, as it can be seen in Fig. 1. At the same time, we remain in the
classical NRSfM setting without strong priors (which restrict to object-specific
scenarios) or assuming the availability of training data with 3D geometry. We
find that among several algorithmic design choices, replacing an explicit defor-
mation model by an implicit one, i.e., a neural network with latent variables for
each shape, brings multiple advantages and enables new applications compared
to the previous work such as temporal state segmentation, shape completion,
interpolation and direct monocular non-rigid 3D reconstruction (see Fig. 1-b/
for some examples).

By varying the number of parameters in our neural component, we can ex-
press our assumption on the complexity of the observed deformations. We ob-
serve that most real-world deformations evince state recurrence which can serve
as an additional reconstruction constraint. By imposing constraints on the latent
space, we can thus detect a period of the sequence, denoted by � , i.e., the dura-
tion in frames after which the underlying non-rigid 3D states repeat, and classify
the recovered 3D states based on their similarity. Next, by attaching an image
encoder to the learnt neural deformation model (deformation auto-decoder), we
can perform in testing direct monocular non-rigid 3D reconstruction at inter-
active frame rates. Moreover, an auto-decoder represents non-rigid states in a
compressed form due to its compactness.

Note that the vast majority of the energy functions proposed in the literature
so far is not fully differentiable or cannot be easily used in learning-based systems
due to computational or memory requirements [1,8,19,37]. We combine a data
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loss, along with constraints in the metric and trajectory spaces, a temporal
smoothness loss as well as latent space constraints into single energy — with
the non-rigid shape parametrised by an auto-decoder — and optimise it with
the back-propagation algorithm [49]. The experimental evaluation indicates that
the proposed N-NRSfM approach obtains competitive solutions in terms of 3D
reconstruction, and outperforms competing methods on several sequences, but
also represents a useful tool for non-rigid shape analysis and processing.

Contributions. In summary, the primary contributions of this work are:

? The first, to the best of our belief, fully differentiable dense neural NRSfM
approach with a novel auto-decoder-based deformation model (Secs. 3, 4);

? Subspace constraints on the latent space imposed in the Fourier domain.
They enhance the reconstruction accuracy and enable temporal classification
of the recovered non-rigid 3D states with period detection (Sec. 4.2);

? Several applications of the deformation model including shape compression,
interpolation and completion, as well as fast direct non-rigid 3D reconstruc-
tion from monocular image sequences (Sec. 4.4);

? An extensive experimental evaluation of the core N-NRSfM technique and
its applications with state-of-the-art results (Sec. 5).

2 Related Work

Recovering a non-rigid 3D shape from a single monocular camera has been an
active research area in the past two decades. In the literature, two main classes
of approaches have proved most effective so far: template-based formulations
and NRSfM. On the one hand, template-based approaches relied on establishing
correspondences with a reference image in which the 3D shape is already known
in advance [42,53]. To avoid ambiguities, additional constraints were included
in the optimisation, such as the inextensibility [42,65], as rigid as possible pri-
ors [68], providing very robust solutions but limiting its applicability to almost
inelastic surfaces. While the results provided by template-based approaches are
promising, knowing a 3D template in advance can become a hard requirement.
In order to avoid that, NRSfM approaches have reduced these requirements,
making their applicability easier. In this context, NRSfM has been addressed in
the literature by means of model-based approaches, and more recently, by the
use of deep-learning-based methods. We next review the most related work to
solve this problem by considering both perspectives.

Non-Rigid Structure from Motion. NRSfM has been proposed to solve the
problem from 2D tracking data in a monocular video (in the literature, 2D tra-
jectories are collected in a measurement matrix). The most standard approach
to address the inherent ambiguity of the NRSfM problem is by assuming the
underlying 3D shape is low-rank. In order to estimate such low-rank model,
both factorisation- [11] and optimisation-based approaches [43,61] have been
proposed, considering single low-dimensional shape spaces [16,19], or a union
of temporal [69] or spatio-temporal subspaces [3]. Low-rank models were also
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extended to the other domains, by exploiting pre-defined trajectory basis [7],
the combination of shape-trajectory vectors [28,29], and the force space that
induces the deformations [5]. On top of these models, additional spatial [38]
or temporal [2,10,39] smoothness constraints, as well as shape priors [12,21,35]
have also been considered. However, in contrast to their rigid counterparts,
NRSfM methods are typically sparse, limiting their application to a small set
of salient points. Whereas several methods are adaptations of sparse techniques
to dense data [22,51], other techniques were explicitly designed for the dense
setting [1,19,37] relying on sophisticated optimisation strategies.
Neural Monocular Non-Rigid 3D Reconstruction. Another possibility
to perform monocular non-rigid 3D reconstruction is to use learning-based ap-
proaches. Recently, many works have been presented for rigid [13,18,30,40,66]
and non-rigid [27,47,54,62] shape reconstruction. These methods exploited a
large and annotated dataset to learn the solution space, limiting their appli-
cability to the type of shapes that are observed in the dataset. Unfortunately,
this supervision is a hard task to be handled in real applications, where the
acquisition of 3D data to train a neural network is not trivial.

While there has been work at the intersection of NRSfM and deep learn-
ing, the methods require large training datasets [34,41,52] and address only the
sparse case [34,41]. C3DPO [41] learns basis shapes from 2D observations and
does not require 3D supervision, similar to our approach. Neural methods for
monocular non-rigid reconstruction have to be trained for every new object class
or shape configuration within the class. In contrast to the latter methods — and
similar to the classical NRSfM — we solely rely on motion and deformation cues.
Our approach is unsupervised and requires only dense 2D point tracks for the
recovery of non-rigid shapes. Thus, we combine the best of both worlds, i.e., the
expressivity of neural representations for deformation models and improvements
upon weak prior assumptions elaborated in previous works on dense NRSfM.
We leverage the latter in the way so that we find an energy function which is
fully differentiable and can be optimised with modern machine-learning tools.

3 Revisiting NRSfM

We next review the NRSfM formulation that will be used later to describe our
neural approach. Let us consider a set of P points densely tracked across T
frames. Let spt = [xpt ; y

p
t ; z

p
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and ŵp
t = [upt ; v

p
t ]> its 2D position according to an orthographic projection. In

order to simplify subsequent formulation, the camera translation tt =
P
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