
Supplemental Document:
A Versatile Scene Model with Differentiable Visibility

Applied to Generative Pose Estimation

Helge Rhodin1 Nadia Robertini1, 2 Christian Richardt1, 2 Hans-Peter Seidel1 Christian Theobalt1

1 MPI Informatik 2 Intel Visual Computing Institute

1. Introduction
In our paper, we introduce a new visibility and image for-
mation model that is differentiable everywhere. Applied to
generative pose estimation, it improves convergence of nu-
merical optimization. In this supplemental document, we
explain in more detail, and generality, the following parts
of our main paper:

• Full details on the scene and model parameters of all
our experiments (Section 2).

• Application of the visibility model to geometry and ap-
pearance estimation (Section 2.1).

• The qualitative comparison to Stoll et al. on the Walker
sequence [2] (Section 2.2).

• Impact of varying the image resolution (Section 2.3).

• Analytic gradients of visibility and introduced objec-
tive functions (Section 3).

2. Results
Details on all input sequences, complexity of the utilized
models, and optimization results are given in Table 1.

2.1. Shape optimization

The goal of this experiment is to evaluate the applicabil-
ity of our image formation model to geometry and appear-
ance estimation from multiple RGB images. Input to the
method are 11 RGB images from calibrated cameras and
corresponding silhouettes obtained by background subtrac-
tion (see Figure 1). We initialize the model with 200 small
white Gaussians positioned randomly around the center of
the capture volume. Subsequently, the position µq and size
σq of each Gaussian Gq is optimized for photo-consistency
Fpc between silhouette images and model density.

Figure 1 shows the reconstructed shape after 100, 300
and 10000 gradient iterations from a 12th camera which is

Figure 1. Shape and appearance estimation using the photo-
consistency Fpc. Top: Input RGB images and extracted silhou-
ettes. Bottom: reconstruction process from an unused camera view.
From left to right: initialization, after 100, 300, 10000 iterations,
and color back-projection. Each Gaussian is represented by a
sphere of radius equal to its standard deviation.

not used for optimization. This verifies that the geometry of
an object can accurately be estimated in the same manner
as the object pose. Note that a few Gaussians are pushed
outside of the silhouette (presumably due to too large gra-
dient steps) and vanish in size. These could be removed in
a post-process.

The color of each Gaussian Gq is inferred by the
weighted average over the pixel colors of all pixels (u, v)
in all RGB input images, weighted by the corresponding
Gaussian visibility Vq((u, v),γ). This shape estimation of
a human actor is a special instance of the actor model cre-
ation step proposed by Stoll et al. [2], who optimize a para-
metric actor model that consists of Gaussians constrained to
move with a skeleton. We show that our method is versatile
enough to approximate the actor’s shape without positional
constraints between blobs.
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Sequence Soccer (two actors) Soccer (one actor) Marker Walker Shape estimate Rigid objects
Published by Elhayek et al. [1] Stoll et al. [2] Our
Number of cameras 3 2 4 11 1
Number of frames 300 500 522 1
Frame rate 23.8 25 25 n/a
Camera type mobile phone (HTC One X) PhaseSpace Vision Camera simulated
Raw image resolution 1280×720 1296×972 256×256
Environment outdoor, uncontrolled background and lighting studio, uncontrolled background synthetic
Tracked subjects 2 1 1 2
Number of joints 118 59 61 66 0
Number of parameters 84 42 44 43 800 9
Number of Gaussians 182 72 72 77 200 28
Input image resolution 320×180 640×360 320×360 640×360 324×243 128×128
Input pixels per frame ≈12,000 ≈202,000 ≈7,000 ≈122,000 ≈10,000 ≈25,000 ≈80,000 ≈16,000
Ground truth Manual annotation, 3D triangulation Marker 12 cam n/a constructed
Average error [cm] 4.81 4.69 5.88 4.70 3.79 2.55 n/a
Timing [iterations/s] 3.33 0.23 10.0 0.86 8.1 5.01 0.68 2.14

Table 1. A table describing each scene and the relevant parameters, such as number, type and resolution of cameras, pose parameter, run
time per gradient iteration, and reconstruction error (average Euclidean 3D distance over all joints and frames to the ground truth).

Figure 2. Evaluation of our method on the Walker sequence [2].
With only four cameras, our method (blue) is able to accurately
track the whole sequence containing walking (left) and jogging
(right) motions. Here compared to 12 camera tracking with the
method of Stoll et al. (red).

2.2. Additional tracking Experiment

We further evaluate the proposed visibility model on Stoll
et al.’s Walker sequence [2], for which no ground truth
is available. Instead, a reimplementation of the method of
Stoll et al. using 12 cameras is used as reference. The same
skeleton with 77 pose parameters and 43 Gaussians and
image resolution 324×243 is used for both methods. The
approach of Stoll et al. applied on the full available cam-
era acquisition setup, consisting of 12 cameras, produces
qualitatively comparable results to our approach applied on
4 cameras only, see Figure 2. The average Euclidean 3D
joint position distance between both results is only 2.55 cm.
At the point of very fast arm-jogging motions with strong
occlusions, small errors are visible, however, our method
recovers quickly. Please watch the supplemental video for
tracking results over the whole sequence.

2.3. Input image resolution and thresholding

The method of Stoll et al. operates on a hierarchical im-
age representation, that clusters regions of similar color in a
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Figure 3. Comparison of Fmc and F′
mc, based on the Euclidean 3D

joint position error of all limb joints with respect to marker based
ground truth. The impact of using a hierarchical representation is
much smaller than the improvement on Stoll et al.

quad-tree, whereas our method operates on pixels. To verify
that the gained improvements are primarily due to our intro-
duced visibility model, and not due to different image res-
olutions, we run our algorithm on the studio sequence with
the same quad-tree representation that models squared areas
of similar color by a single pixel of corresponding size. To
make our energy model applicable to representations with
varying pixel size, we construct the energy F′mc, which is
equivalent to Fmc, but weights each pixel by its area. The in-
fluence of the hierarchical representation on the reconstruc-
tion quality is much smaller than the improvement on Stoll
et al., as shown in Figure 3.

Moreover, we validate that the error due to excluding
model blobs with negligible contribution (Section 3.3 in the
main paper) is vanishingly small; the average error across
the first 100 frames of the Marker sequence is increased by
only 0.0038 cm (0.1% of the total error).
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3. Analytic gradients
In this section, we provide the analytic gradients of the Gaussian visibility Vq and the objective functions Dmc and Dpc with
respect to the Gaussian parameters γ. The gradients of Dmc and Dpc follow immediately from the visibility gradient:

∂Dmc(γ, I)

∂γ
=
∑
(u,v)

∑
q

d(I(u, v), aq)
∂Vq((u, v),γ)

∂γ
, (1)

and

∂Dpc(γ, I)

∂γ
= 2

∑
(u.v)∈I

∑
i

(
L̂i((u, v),γ)− Ii(u, v)

) ∂L̂i((u, v),γ)

∂γ
, (2)

where i∈{R,G,B} ranges over the different color channels, and the radiance gradient is

∂L̂(o,n,γ)

∂γ
=
∑
q

aq
∂Vq
∂γ

. (3)

The gradient of visibility of Gaussian Gq is

∂Vq(o,n,γ)

∂γ
=
∑
s∈Sq

∂λq
∂γ

T (o,n, s,γ)Gq(o + sn) + λq
∂T (o,n, s,γ)

∂γ
Gq(o + sn) + λqT (o,n, s,γ)

∂Gq(o + sn)

∂γ
, (4)

with λq = `σq , for some fixed `, it holds

∂λq
∂σ̄q

= `,
∂λq
∂µ̄q

= 0. (5)

The gradient of Gaussian density is

∂Gq(o + sn)

∂γ
=
∂ exp

(
− (s−µ̄q)2

2σ̄2
q

)
c̄q

∂γ
. (6)

In the following, we derive derivatives for all sub-terms with respect to the individual Gaussian parameters. The sampling
location s depends on σ̄q and µ̄q of the GaussianGq for which the visibility is inferred. In this case, s−µ̄qσ̄q

=
µ̄q+k`σ̄q−µ̄q

σ̄q
= k`

and

∂c̄q exp
(
− (k`)2

2

)
∂µ̄q

= 0,
∂c̄q exp

(
− (k`)2

2

)
∂c̄q

= exp

(
− (k`)2

2

)
, and

∂c̄q exp
(
− (k`)2

2

)
∂σ̄q

= 0, (7)

for parameters σ̄p, µ̄p with p 6= q, the gradient ∂Gq(o+sn)
∂γ is zero.
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The gradient of transmission T is

∂T (o,n, s,γ)

∂γ
= T (o,n, s,γ)

∂
∑
p
σ̄pc̄p√

2
π

(
erf
(
−µ̄p√

2σ̄p

)
−erf

(
s−µ̄p√

2σ̄p

))
∂γ

. (8)

For the case of constant sampling location, i.e. ∂s∂µ̄ = ∂s
∂σ̄ = 0, it holds

−
√
π

2

∂σ̄pc̄p

(
erf
(
s−µ̄p√

2σ̄p

)
− erf

(
−µ̄p√
2σ̄p

))
∂µ̄p

= c̄p

(
exp

(
− (s− µ̄p)2

2σ̄2
p

)
− exp

(
− (−µ̄p)2

2σ̄2
p

))
,

−
√
π

2

∂σ̄pc̄p

(
erf
(
s−µ̄p√

2σ̄p

)
− erf

(
−µ̄p√
2σ̄p

))
∂c̄p

= −
√
π

2
σ̄p

(
erf

(
s− µ̄p√

2σ̄p

)
− erf

(
−µ̄p√
2σ̄p

))
,

−
√
π

2

∂σ̄pc̄p

(
erf
(
s−µ̄p√

2σ̄p

)
− erf

(
−µ̄p√
2σ̄p

))
∂σ̄p

= −
√
π

2
c̄p

(
erf

(
s− µ̄p√

2σ̄p

)
− erf

(
−µ̄p√
2σ̄p

))

+
c̄p(s− µ̄p)

σ̄p
exp

(
− (s− µ̄p)2

2σ̄2
p

)
+
c̄p(−µ̄p)
σ̄p

exp

(
− (−µ̄p)2

2σ̄2
p

)
. (9)

And for the case of sampling locations s depending on Gq , i.e. ∂s∂µ̄ 6= 0 and ∂s
∂σ̄ 6= 0, we substitute s−µ̄q

σ̄q
=

µ̄q+k`σ̄q−µ̄q
σ̄q

= k`

as before and consider the special cases

−
√
π

2

∂σ̄q c̄q erf
(
k`√

2

)
∂µ̄q

= 0,

−
√
π

2

∂σ̄q c̄q erf
(
k`√

2

)
∂c̄q

= −
√
π

2
σ̄q erf

(
s− µ̄q√

2σ̄q

)
,

−
√
π

2

∂σ̄q c̄q erf
(
k`√

2

)
∂σ̄q

= −
√
π

2
c̄q erf

(
s− µ̄q√

2σ̄q

)
,

−
√
π

2
σ̄pc̄p

∂ erf
(
µ̄q+k`σ̄q−µ̄p√

2σ̄p

)
∂µ̄q

= −c̄q exp

(
− (s− µ̄q)2

2σ̄q

)

−
√
π

2
σ̄pc̄p

∂ erf
(
µ̄q+k`σ̄q−µ̄p√

2σ̄p

)
∂σ̄q

= −c̄qk` exp

(
− (s− µ̄q)2

2σ̄q

)
. (10)

Finally the derivatives of the ray density of Gaussian Gq with respect to their 3D parameters are

∂σ̄q
∂σq

= 1,
∂σ̄q
∂µq

= 0,

∂µ̄q
∂σq

= 0,
∂µ̄q
∂µq

= n,

∂c̄q
∂σq

= c̄q
(o− µq)

>(o− µq)− µ̄2
q

σ̄3
q

+
c̄q
cq

∂cq
∂σq

, and

∂c̄q
∂µq

= c̄q
(o− µq) + µ̄qn

σ̄2
q

. (11)
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