Quantum Permutation Synchronization
Tolga Birdal Vladislav Golyanik Christian Theobalt Leonidas Guibas
http://quantumcomputervision.github.io/

Introduction

Our Problem: Permutation Synchronization
Matching not just two, but n different sets of objects to each other, jointly [1]. In other words, a multi-way matching. In the scenario where correspondences are bijective, the problem converts to ensuring cycle consistency in the graph of permutations [2]

$$
\begin{aligned}
& \underset{\mathbf{P}^{\operatorname{P} \mathcal{P}_{n}^{N} \mid}}{\arg \min } \sum_{(i, j) \in E} \underbrace{\| \mathbf{P}_{i j}}_{\text {Given }}-\underbrace{\mathbf{P}_{i} \mathbf{P}_{j}^{\top}} \| \\
& \text { Given Unknown }
\end{aligned}
$$

nimizing cycle consistency constraint
Nultiple graph matching Ensuring all cycles are null
Mint gen consteny constrain
We solve the non-convex, combinatorial permutation synchronization problem without relaxation on a real quantum computer.
Adiabatic Quantum Computer Vision (AQC-V)

0 -		QUBO Suppression ECCV'20	Quantum Alignment CVPR'20	Quantum Graph Matching 3DV'2020	
		D-Wave 2 X 1000 qubits	$\begin{gathered} \text { D-Wave } \\ 2000 \mathrm{Q} \\ 2048 \text { qubits } \end{gathered}$	D-Wave 2000 Q 2048 qubits	D-Wave Advantage 1.1 5436 qubtis
	ن	Non- maximum suppression	Pairwise point set alignment	Pairwise graph matching	$\begin{gathered} \text { Permutation } \\ \text { synchronization } \end{gathered}$
dwavesys.com/resources /media-resource		N/A	1 minute	2-3 minutes	>15 minutes

Contributions
(a) Formulating a QUBO for permutation synchronization with permutation-ness as a linear constraint
(b) Extensive evaluation on a real Quantum Computer D-Wave Advantage 1.1

Our Approach: QuantumSync

1. Formulating the Vanilla QUBO

Proposition 1. Permutation synchronization under the Frobenius norm can be written in terms of a QUBO:

where $\mathbf{x}_{i}=\operatorname{vec}\left(\mathbf{X}_{i}\right), \mathbf{x}=\left[\cdots \mathbf{x}_{i}^{\top} \cdots\right]^{\top}$ and:

$$
\mathbf{Q}^{\prime}=-\left[\begin{array}{cccc}
\mathbf{I} \otimes \mathbf{P}_{11} & \mathbf{I} \otimes \mathbf{P}_{12} & \cdots & \mathbf{I} \otimes \mathbf{P}_{1 m} \\
\mathbf{I} \otimes \mathbf{P}_{21} & \mathbf{I} \otimes \mathbf{P}_{22} & \cdots & \mathbf{I} \otimes \mathbf{P}_{2 m} \\
\vdots & \vdots & \ddots & \vdots \\
\mathbf{I} \otimes \mathbf{P}_{m 1} & \mathbf{I} \otimes \mathbf{P}_{m 2} & \cdots & \mathbf{I} \otimes \mathbf{P}_{m m}
\end{array}\right] . \quad \begin{gathered}
\begin{array}{c}
\text { Q is symmetric } \\
\text { and no other } \\
\text { constrathans are } \\
\text { needed. }
\end{array}
\end{gathered}
$$

2. Permutations as Linear Constraints
Group of permutations : $\mathcal{P}_{n}:=\{\mathbf{P} \in \underbrace{0,1\}^{n \times n}}_{\text {Binary }}: \underbrace{\mathbf{P 1}_{n}=\mathbf{1}_{n}}_{\text {Rows sum to } 1}, \underbrace{\mathbf{1}_{n}^{\top} \mathbf{P}=\mathbf{1}_{n}^{\top}}_{\text {Cols sum to } 1}\}$
$\left.\begin{array}{l}\text { Hence, for all variables }\end{array}\right\} \operatorname{diag}\left(\mathbf{A}_{1}, \cdots, \mathbf{A}_{n}\right) \mathbf{x}=\mathbf{1}, \quad \mathbf{A}_{i}=\left[\begin{array}{c}\mathbf{I} \otimes \mathbf{1}^{\top} \\ \mathbf{1}^{\top}\end{array}\right]$
3. Incorporating Linear Constraints into QUBO

Proposition 2. The constrained problem can be formulated into an unconstrained QUBO:

Q

Experimental Evaluation

1. Solving Real Problems on D-Wave Advantage 1.1 D-Wave Python API: docs.ocean.dwavesys.com/en/stable/

We can match the state-of-the-art methods in small problems ($n=4, m=4$).

	Average
Exhaustive	0.88 ± 0.104
EIG	0.83 ± 0.088
ALS	0.87 ± 0.092
LIFT	0.87 ± 0.094
Birkhoff	0.87 ± 0.093
D-Wave(Ours)	0.87 ± 0.096

2. Impact of regularization (Binary variables vs. Permutations)

used synthetic data
$\sigma=0$
Our constraint injection scheme yields valid permutations while maintaining the solution quality.
3. Insights into hardware implementation ${ }_{\text {sso }}$
 the future of the future of
quantum computers and the extent that qubits can be scaled.

Our forward-looking experiments demonstrate that quantum hardware has reached the level that it can be applied to real-world problems.
We hope to inspire and foster new and exciting research in quantum computer vision.

References

